GPLUS EDUCATION

Date	:			
Time	:			PHYSICS
Marks	:			

WAVES

Single Correct Answer Type

A police car moving at $22 \, ms^{-1}$, changes a motorcyclist. The police man sounds his horn at 176 Hz, while both of them move towards a stationary siren of frequency 165 Hz. Calculate the speed of the motorcycle, if it is given that he does not observe any beats.

- a) 33ms^{-1} b) 22 ms^{-1} c) Zero d) 11ms^{-1}
- A stone is hung in air from a wire which is stretched over a sonometer. The bridges of the sonometer are L cm apart when the wire is in unison with a tuning fork of frequency N. When the stone is completely immersed in water, the length between the bridges is l cm for re-establishing unison, the specific gravity of the material of the stone is
 - b) $\frac{L^2 l^2}{I^2}$ c) $\frac{L^2}{L^2 - l^2}$ d) $\frac{L^2 + l^2}{L^2}$ a) $\frac{L^2}{L^2 + l^2}$
- A man standing between two parallel hills, claps his hand and hears successive echoes at regular intervals of 11s. If velocity of sound is $340ms^{-1}$, then the distance between the hills is b) 170 m a) 100m d) 340 m
- The disc of a siren containing 60 holes rotates at a constant speed of 360 rpm. The emitted sound is in unison with a tuning fork of frequency
 - a) 10 Hz b) 360 Hz c) 216 Hz d) 60 Hz
- A wire of density $9 \times 10^3 \ kgm^{-3}$ is stretched between two clamps 1m part and is subjected to an extension of $4.9 \times 10^{-4} m$. The lowest frequency of transverse vibration in the wire is $Y = 9 \times 10^{10} Nm^{-2}$) a) 40 Hz b) 35 Hz c) 30 Hz d) 25 Hz
- A piston fitted in cylindrical pipe is pulled as shown in the figure. A tuning fork is sounded at open end and loudest sound is heard at open length 13cm, 41 cm and 69 cm, the frequency of tuning fork if velocity of sound is $350ms^{-1}$ is

- Quality of a musical note depends on
 - a) Harmonics present
 - c) Fundamental frequency

- c) 417 Hz
- d) 715 Hz
- a) 1250 Hz b) 625 Hz
 - b) Amplitude of the wave
 - d) Velocity of sound in the medium
- A 5.5 m length of string has a mass of 0.035 kg. If the tension in the string is 77 N, the speed of a wave on the string is
 - a) 110ms^{-1}
- b) $165m^{-1}$
- c) 77ms^{-1}
- d) 102ms^{-1}

9.	When an aeroplane attabecause	ains a speed higher t	han the velocity of sour	d in air, a loud bang is heard. Th	is is	
	a) It explodes					
	b) It produces a shock w	wave which is receiv	ed as the bang			
	c) Its wings vibrate so	violently that the bar	ng is heard			
	d) The normal engine n	oises undergo a Dop	pler shift to generate th	ne bang		
10.	· -			re. The number of beats heard p	er	
	second when the tension	-		•		
	a) 1	b) 2	c) 4	d) 1/2		
11.	-			respectively. Phase difference b	etween	
	• •	-	•	nese two particles will be		
	a) 10 cm	b) 15 cm	c) 20 cm	d) 50 cm		
12.	•	•	•	between the observer and the hi	ll a	
				hill with a uniform speed. If the	n u	
	-			frequency of the sound heard af	ter	
	reflection from the hill				ter	
	a) 1042	b) 1032	c) 1022	d) 1012		
12	,	•	•	locity one-fifth of the velocity of	cound	
13.	What is the percentage			ocity one-intil of the velocity of	souna.	
				d) 20%		
1 /	a) Zero	b) 0.5%	c) 5%		d in the	
14.		-	e unrough a material me	dium, the quantities transmitted	i iii uie	
	propagation direction a		L) F.,			
	a) Energy, momentum	and mass	b) Energy	11:		
4-	c) Energy and mass	I,		d linear momentum		
15.	When a tuning fork vib			10.0		
	a) Longitudinal	b) Transverse	c) Progressiv	-	1 0	
16.	A tuning fork of frequency $392 Hz$, resonates with $50 cm$ length of a string under tension (T). If length of					
	-	The second second		mber of beats heard when the st	ring	
	and the tuning fork ma			75.45		
	a) 4	b) 6	c) 8	d) 12		
17.			_	rates into water. If speed of sour	nd in	
	water is 1500ms ⁻¹ ,the					
	a) 1500 Hz, 1m	b) 1000 Hz, 1.5m	•			
18.				then at the resonance frequenc	y would	
	a) Increase	b) Decrease	c) Slightly in	_		
19.	Three sources of equal	intensities with freq	uencies 400, 401 and 4	02 vib/s are sounded together. T	.'he	
	number of beats/s is					
	a) Zero	b) 1	c) 2	d) 4		
20.	Figure here shown an i	ncident pulse P refle	cted from a rigid suppo	rt. Which one of A , B , C , D repres	sents	
	the reflected pulse corr	ectly				
	← P					
			_			
	a)	b)		→ d)	$\overline{\rightarrow}$	
21.	A cylindrical tube conta	nining air is open at l	oth ends. If the shortes	t length of the tube for resonanc	e with a	
	given fork is 2 cm, the r			_		
	a) 60 cm	b) 40 cm	c) 90 cm	d) 80 cm		

22.	On which principle does sonometer works?		
	a) Hooke's law b) Elasticity	c) Resonance	d) Newton's law
23.	The intensity ratio of two waves is 1:9. The ratio		D 0 1
24	a) 3:1 b) 1:3	c) 1:9	d) 9:1
24.	The driver of a car travelling with speed 30 metro 600 Hz. If the velocity of sound in air is 330 metro	•	
	heard by the driver is	es per secona, the frequer	icy of the reflected sound as
	a) 720 <i>Hz</i> b) 555.5 <i>Hz</i>	c) 550 <i>Hz</i>	d) 500 <i>Hz</i>
25.	-		
201		c) 560	
	a) 80 b) $(\frac{4}{3})$,	d) 320 × 240
26.	Two tuning fork, A and B produce notes of freque	ncies 258 Hz and 262 Hz. A	An unknown note sounded
	with a produces certain beats. When the same no	te is sounded with B, the b	eat frequency gets doubled, the
	unknown frequency is		
	a) 256 Hz b) 254 Hz	c) 300 Hz	d) 280 Hz
27.	The amplitude of two waves are in ratio 5:2. If all		vo waves
	Are same, then what is the ratio of their energy de		d) 25:4
20	a) 5:2 b) 5:4 v_1 and v_2 are the velocities of sound at the same t	c) 4:5	,
20.			toffic gases of defisities $ ho_1$ and
	$ \rho_2 $ respectively. If $\rho_1/\rho_2 = \frac{1}{4}$ then the ratio of velo		
20	a) 1:2 b) 4:1	c) 2 : 1	d) 1 : 4
29.	The equation $y = A \cos^2(2\pi nt - 2\pi \frac{x}{\lambda})$ represent	s a wave with	
	a) Amplitude $A/2$, frequency $2n$ and wavelength A		
	b) Amplitude $A/2$, frequency $2n$ and wavelength A		
	c) Amplitude A , frequency $2n$ and wavelength 2λ		
20	d) Amplitude A , frequency n and wavelength λ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1 v
30.	A wavelength 0.60 <i>cm</i> is produced in air and it tra		
21	a) Audible wave b) Infrasonic wave	c) Ultrasonic wave	d) None of the above
31.	The sound wave was produced in a gas is always a) Longitudinal b) Transverse	c) Stationary	d) Electromagnetic
32	Two Cu wires of radii R_1 and R_2 such that $(R_1 > R_2)$,
021	a) Transverse wave travels after in thicker wire		avels faster in thinner wire
	c) Travels with the same speed in both the wires	d) Does not travel	
33.	A police car horn emits a sound at a frequency 24	•	when the car is at rest. If the
	speed of sound is 330ms ⁻¹ , the frequency heard h	oy an observer who is appı	roaching the car at speed of 11
	ms^{-1} , is		
	a) 248 Hz b) 244 Hz	c) 240 Hz	d) 230 Hz
34.	The apparent frequency of the whistle of an engin	-	
	stationary observer. If the velocity of the sound is		
	a) 40 ms ⁻¹ b) 20 ms ⁻¹	c) 340 ms ⁻¹	d) 180 ms ⁻¹
35.	•	els out from a common poi	nt. The phase difference
	between them after 0.6 sec is		2
	a) Aero b) $\frac{\pi}{2}$	c) π	d) $\frac{3\pi}{2}$
36.	L	stretched under tension T i	L
	to 25T, then the frequency of the fundamental not		
	a) 25v b) 5v	c) 10v	d) V
37.	Two stretched strings have length \boldsymbol{l} and $2\boldsymbol{l}$ while	tensions are T and 4T resp	ectively. If they are made of

same material the ratio of their frequencies is

	201	12.4.0		D 4 4			
00	a) 2:1	b) 1:2	c) 1:1	d) 1:4			
38.	_		orate in a direction perpend	icular to the direction of			
	wave motion is known as		-) D	J) N C 4			
20	a) Transverse wave	_	c) Propagated waves	-			
39.	The equation of progress	ive wave is $y = 0.2 \sin 2\pi$	$\left[\frac{1}{0.01} - \frac{1}{0.3}\right]$, where x and y ar	e in metre and t is in second.			
	The velocity of propagati	on of the wave is					
	a) 30 ms^{-1}	b) 40 ms ⁻¹	c) 300 ms ⁻¹	d) 400 ms^{-1}			
40.	-	ween two points separated	d by 0.8 m in a wave of freq	uency 120 Hz is 0.5π . The			
	wave velocity is	1.) 004 -1) of c =1	D = 00 =1			
4.4	a) 144ms ⁻¹	b) 384ms ⁻¹	c) 256ms ⁻¹	d) 720ms ⁻¹			
41.		=	-	than the frequency of tuning			
		-	b beats per second are prod	uced. Then the frequency of			
	the tuning fork $'A'$ in (in a) 98	b) 100	c) 103	d) 105			
1.2	In a stationary wave all the	,	c) 103	u) 103			
ΤΔ,	a) On either side of a nod	-					
	•	two nodes vibrate in same	e nhase				
		two antinodes vibrate in s	-				
	d) Of the medium vibrate		r				
43.			formed between two atom	s having a distance 1.21 Å			
		length of the standing way					
	a) 1.21Å	b) 1.42Å	c) 6.05Å	d) 3.63Å			
44.	A wave has velocity v in r	nedium P and velocity 2v	in medium ${\it Q}$. If the wave is	incident in medium P at an			
	angle of 30°, then the ang	gle of refraction will be					
	a) 30°	b) 45°	c) 60°	d) 90°			
45.			ards each other, then which	of the following is true			
	regarding frequency and wavelength of wave observed by the observer?						
	a) More frequency, less wavelength						
	b) More frequency, more	•					
	c) Less frequency, less w	_					
16	d) More frequency, const		v if ita madina ia danblad an	d ita tanaian bagamag half			
40.	-	•	 v. if its radius is doubled an damental frequency will be 				
	a) V						
	a, v	b) $\frac{v}{\sqrt{2}}$	c) $\frac{v}{2}$	d) $\frac{v}{2\sqrt{2}}$			
47.	Beats are produced by tw	o travelling waves each o	f loudness I and nearly equa	al frequencies n_1 and n_2 . The			
	beat frequency will be and maximum loudness hard will be						
	a) $(n_1 - n_2),2I$	b) $(n_1 - n_2)$,4 I	c) $(n_1 - n_2)$,3 <i>I</i>	d) $(n_1 - n_2)$, I			
48.	=	avels along a stretched str	ring and reaches the fixed e	nd of the string. It will be			
	reflected with						
	a) A phase change of 180						
		incident pulse with no re					
		° with no reversal of veloc					
40	=	incident pulse but with v		1 (1 . 1			
49.		sin [(kx-ωt)] is reflected b	y a rigid wall at $x=0$. Then	the reflected wave can be			
	represented by a) $y=a \sin(kx+\omega t)$	h) w=a coc (by Lost)	c) y=-a sin (kx-ωt)	d) va cin (bv-) (bt)			
50				eed of sound in the gaseous			
JU.	mixture is (R=8.31 J/mo	=	ser centage change in the sp	eed of south in the gaseous			

	a) 0.167%	b) 0.334%	c) 1%	d) 2%		
51.	Two open organ pipe	es gives 4 <i>beats/sec</i> wher	n sounded together in their	r fundamental nodes. If the length		
	of the pipe are 100 cm and 102.5 cm respectively, then the velocity of sound is :					
	a) 496 <i>m/s</i>	b) 328 <i>m/s</i>	c) 240 m/s	d) 160 <i>m/s</i>		
52.			•	er finds the apparent frequency		
	equal to half of the o		<i>y</i>	y		
	a) $v/2$	b) 2 <i>v</i>	c) v/4	d) <i>v</i>		
53		•		and 595 and decide whether it is		
00.	closed at one end or		3 of frequencies 123, 233 (and 555 und decide whether it is		
	a) 17, closed	b) 85, closed	c) 17, open	d) 85, open		
54.	•		-	mass from the free end of the wire		
J4.				ency of the wire is 260 Hz. If the		
	-		-	quency will become (take $g =$		
	$10 ms^{-2}$)	ompletely submerged in w	vater, the fundamental free	quency will become (take $g =$		
	•	b) 220 H-	a) 220 Hz	4) 300 Hz		
	a) 240 <i>Hz</i>	b) 230 <i>Hz</i>	c) 220 Hz	d) 200 <i>Hz</i>		
55.	_	_		ransverse wave pulse is produced		
	at the lower end. The	e speed (v) of wave pulse	varies with height <i>n</i> from	the lower end as shown in figure.		
	<u> </u>		†	Ţ		
	V	V	$\begin{bmatrix} v \\ A \end{bmatrix}$	<u>v</u>		
	a) 1/	b) T /	c) [/	d) [
	´	´	,	, L		
	→ h	$\longrightarrow h$	→ h	<u>→</u> h		
			1 1			
56.	-	The second secon		s to be coming at an angle of 60^0		
	with the vertical. If v	velocity of sound is v , then	the speed of aeroplane is			
	a) <i>v</i>	b) $\frac{\sqrt{3}}{12}$	$\frac{v}{c}$	d) 2		
	-	2 ED	LICATION	-9		
57.	In an open organ pip		DCATION			
	a) Transverse stand	O .	b) Longitudinal sta	_		
	c) Longitudinal mov	O	d) Transverse mov	•		
58.				ide and of nearly the same		
				waves will be n . Where n is		
	a) 3	b) 1	c) 4	d) 2		
59.	Ultrasonic, Infrasoni	c and audible waves trave	l through a medium with s	speeds V_u , V_i and V_a respectively,		
	then					
	a) V_u , V_i and V_a are n	early equal	b) $V_u \ge V_a \ge V_i$			
	c) $V_u \le V_a \le V_i$		d) $V_a \leq V_u$ and $V_u \approx$	$pprox V_i$		
60.	A wave travelling in	stretched string is describ	ed by the equation $y = As$	$\sin(kx - \omega t)$. The maximum		
	particle velocity is					
	a) $A\omega$	b) ω/k	c) $d\omega/dk$	d) x/t		
61.	The frequency of a w	whistle of an engine is 600	cycles/sec is moving with	the speed of $30 m/sec$ towards		
	an observer. The app	parent frequency will be (velocity of sound $= 330 m$	/s)		
	a) 600 <i>cps</i>	b) 660 <i>cps</i>	c) 990 <i>cps</i>	d) 330 <i>cps</i>		
62.	The second overtone	e of an open pipe is in reso	nance with the first overt	one of a closed pipe of length 2m.		
	length of the open pi					
	a) 4m	b) 2m	c) 8m	d) 1m		
63.	-	•		column is $42 m$. (speed of sound in		
	air = 332 m/sec)					
	a) 2 <i>Hz</i>	b) 4 <i>Hz</i>	c) 7 <i>Hz</i>	d) 9 <i>Hz</i>		

64.	Speed of sound at consta	nt temperature depends on	l	
	a) Pressure	b) Density of gas	c) Above both	d) None of the above
65.	Out of the given waves (1	a), (2), (3) and (4)		
	$y = a\sin(kx + \omega t) (1$)		
	$y = a\sin(\omega t - kx) (2)$			
	$y = a\cos(kx + \omega t) \dots (3$	•		
	$y = a\cos(\omega t - kx) \dots (4$			
		sources S_1 , S_2 , S_3 and S_4 respectively.		enomena would be
	=	appropriate conditions who	en	
	_	$S(1)$ and S_2 emits wave (2) (3) and S_4 emits wave (4)		
	-	(2) and S_4 emits wave (4)		
	d) S_4 emits waves (4) and			
66.		cle velocity and wave veloci	ty in a transverse wave is	
	a) Zero	b) $\pi/4$	c) π/2	d) π
67.	When sound is produced	in an aeroplane moving wi	th a velocity of 200 ms^{-1} ho	orizontal its echo is heard
	after $10\sqrt{5}$ s. if velocity of	sound in air is $300 ms^{-1}$ th	e elevation of aircraft is	
	a) 250 m	b) $250 \sqrt{5}m$	c) 12.50 m	d) 2500 m
68.	A wave travelling along a	string is described by the	equation $y = a \sin(\omega t - kx)$) the maximum particle
	velocity is			
	a) <i>αω</i>	b) $\frac{\omega}{k}$	c) $\frac{d\omega}{dk}$	d) $\frac{x}{l}$
60			un	ં ા flected from rigid boundary
05.		is reflected, then equation		nected from Figid boundary
	a) $y = A \sin(\omega t + kx)$	is reflected, their equation	b) $y = -0.8A \sin(\omega t + kx)$	
	c) $y = 0.8A \sin(\omega t + kx)$	1	d) $y = A \sin(\omega t + 0.8kx)$,
70.	A wave travelling in posit	tive X -direction with $A = 0$.2m has a velocity of 360 m	/sec. If $\lambda = 60m$, then
	correct expression for the	e wave is	AHON	
	a) $y = 0.2 \sin \left[2\pi \left(6t + \frac{1}{6} \right) \right]$	$\left(\frac{x}{x}\right)$	b) $y = 0.2 \sin \left[\pi \left(6t + \frac{x}{60} \right) \right]$)]
		70 -		_
	c) $y = 0.2 \sin \left[2\pi \left(6t - \frac{1}{6} \right) \right]$)() ['] ¹	$d) y = 0.2 \sin \left[\pi \left(6t - \frac{x}{60} \right) \right]$	· -
71.		es of sound of equal intensit	y with frequencies 400, 40	1 and 402 <i>vib/sec</i> . The
	number of beats heard po	13.4		1) 0
70	a) 0	b) 1	c) 2	d) 3
12.	-	ne string vibrates in 4 loops rate in 6 loops, the weight t		
	a) 7 g	b) 36 g	c) 21 g	d) 29 g
73.	, ,	wave and a travelling wave	, 0	, ,
		two points $x_1 = \frac{\pi}{3k}$ and x_2	_	
	The ratio ϕ_1/ϕ_2 is	3k 4114 112	2k 41 41 411 42 105 pos	or orginal one or a manual
	a) 1	b) 5/6	c) 3/4	d) 6/7
74.		nd in nitrogen and helium g		, -, .
		_	<u></u>	./6
	a) $\sqrt{\frac{2}{7}}$	b) $\frac{\sqrt{1}}{7}$	c) $\frac{\sqrt{3}}{5}$	d) $\frac{\sqrt{6}}{5}$
75	V	,	3	J
/5.	Apparatus used to find or a) Melde's apparatus	at the velocity of sound in g b) Kundt's tube	as is c) Quincke's tube	d) None of these
	aj meiue s apparatus	o) Kunat s tube	c) Quilicke's tube	a) None of these

	n point with
successive phase difference of $\frac{\pi}{2}$, the amplitude of the resulting wave in mm is given by a) 7 b) 6 c) 5 d) 4	
77. Two trains, each moving with a velocity of 30 ms^{-1} , cross each other. One of the trains gives whose frequency is 600Hz. If the speed of sound is 330 ms^{-1} the apparent frequency for passitting in the other train before crossing would be	
a) 600 Hz b) 630 Hz c) 920 Hz d) 720 Hz 78. A device used for investigating the vibration of a fixed string of wire is	
a) Sonometer b) Barometer c) Hydrometer d) None of t	hese
79. The source producing sound and an observer both are moving along the direction of propagation of propagatio	ation of sound
waves. If the respective velocities of sound, source and an observer are v , v_s and v_o , then the	apparent
frequency heard by the observer will be $(n = \text{frequency of sound})$	`
a) $\frac{n(v+v_o)}{v-v_o}$ b) $\frac{n(v-v_o)}{v-v_s}$ c) $\frac{n(v-v_o)}{v+v_s}$ d) $\frac{n(v+v_o)}{v+v_s}$	<u>)</u>
$v - v_0$ $v - v_s$ $v + v_s$ $v + v_s$	2π
80. Two sound waves (expressed in CGS units) given by $y_1 = 0.3 \sin \frac{2\pi}{\lambda} (vt - x)$ and $y_2 = 0.4 \sin \frac{2\pi}{\lambda} (vt - x)$	$\frac{1}{\lambda}(vt-x+$
$ heta$) interfere. The resultant amplitude at a place where phase difference is $\pi/2$ will be	
a) $0.7 \ cm$ b) $0.1 \ cm$ c) $0.5 \ cm$ d) $\frac{1}{10} \sqrt{7} \ cm$	٤
81. The wavelength of two notes in air are $\frac{36}{195}$ m and $\frac{36}{193}$ m. each note produces 10 beats per second	
with a third note of fixed frequency. The velocity of sound in air in m/s is	1 ,
a) 330 b) 340 c) 350 d) 360	
82. Law of superposition is applicable to only	
a) Light waves b) Sound waves c) Transverse waves d) All kinds	of waves
83. A car moving with a velocity of 36 km^{-1} crosses a siren of frequency 500 Hz. The apparent f	requency of
siren after passing it will be	
a) 520 Hz b) 485 Hz c) 540 Hz d) 460 Hz	
84. If the velocity of sound in air is 336 m/s. The <i>maximum</i> length of a closed pipe that would p	roduce a just
audible sound will be	
a) 3.2 cm b) 4.2 m c) 4.2 cm d) 3.2 m	76.3
85. A whistle revolves in a circle with an angular speed of 20 <i>rad/sec</i> using a string of length 50	
frequency of sound from the whistle is 385 Hz, then what is the minimum frequency heard by which is far away from the centre in the same plane? $(n = 340 \text{ m/s})$	y an observer,
which is far away from the centre in the same plane? $(v = 340 \text{ m/s})$ a) 333 Hz b) 374 Hz c) 385 Hz d) 394 Hz	
86. The velocity of sound I air is 330ms^{-1} . The rms velocity of air molecules ($\gamma = 1.4$) is approx	imately equal
to	matery equal
a) 400 ms ⁻¹ b) 471.4 ms ⁻¹ c) 231 ms ⁻¹ d) 462 ms ⁻¹	L
87. For the stationary wave $y = 4 \sin\left(\frac{\pi x}{15}\right) \cos(96\pi t)$, the distance between a node and the next	antinode is
a) 7.5 b) 15 c) 22.5 d) 30	
88. A source is moving towards an observer with a speed of $20 m/s$ and having frequency of 240) <i>Hz</i> . The
observer is now moving towards the source with a speed of 20 m/s . Apparent frequency her	
observer, if velocity of sound is $340 m/s$, is	•
a) 240 Hz b) 270 Hz c) 280 Hz d) 360 Hz	
89. A tuning fork of frequency 340 Hz is vibrated just above the tube of 120 cm height. Water is	poured slowly
in the tube, what is the minimum height of water necessary for the resonance?	
a) 45 cm b) 30 cm c) 35 cm d) 25 cm	
a) 45 cm b) 30 cm c) 35 cm d) 25 cm 90. Two waves are represented by $y_1 = 4 \sin 404\pi t$ and $y_2 = 3 \sin 400\pi t$. Then a) Beat frequency is 4 Hz and the ratio of maximum to minimum intensity is 49 : 1	

- c) Beat frequency is 2 Hz and the ratio of maximum to minimum intensity is 1:49
- d) Beat frequency is 4 Hz and the ratio of maximum to minimum intensity is 1:49
- 91. If the speed of the wave shown in the figure is 330m/s in the given medium, then the equation of the wave propagating in the positive x-direction will be (all quantities are in M.K.S. units)
- 0.05 m $0.25 \, m$ a) $y = 0.05 \sin 2\pi (4000 t - 12.5 x)$ b) $y = 0.05 \sin 2\pi (4000 t - 122.5 x)$ c) $y = 0.05 \sin 2\pi (3300 t - 10 x)$ d) $y = 0.05 \sin 2\pi (3300 x - 10 t)$ 92. What is the phase difference between two successive crests in the wave? b) $\pi/2$ c) 2π 93. Two identical plain wires have a fundamental frequency of 600 cycle per second when kept under the same tension. What fractional increase in the tension of one wires will lead to the occurrence of 6 beats per second when both wires vibrate simultaneously a) 0.01 b) 0.02 c) 0.03 d) 0.04 94. Two strings *X* and *Y* of a sitar produce a beat frequency 4*Hz*. When the tension of the string *Y* is slightly increased the beat frequency is found to be 2 Hz. If the frequency of X is 300 Hz, then the original frequency of *Y* was a) 296 Hz b) 298 Hz c) 302 Hz d) 304 Hz 95. Two waves of wavelength 1.00m and 1.01m produces 10 beats in 3s. What is the velocity of the wave? a) 150 ms^{-1} b) 115.2 ms^{-1} c) 336.6 ms^{-1} 96. Two waves are approaching each other with a velocity of 16 m/s and frequency n. The distance between two consecutive nodes is 97. When two sound waves are superimposed, beats are produced when they have a) Different amplitudes and phase b) Different velocities c) Different phases d) Different frequencies 98. It takes 2.0 s for a sound wave to travel between two fixed points when the day temperature is 10°C. if the temperature rises to 30°C the sound wave travels between the same fixed parts in a) 1.9s b) 2.0s c) 2.1s d) 2.2s 99. From a point source, if amplitude of waves at a distance r is A, its amplitude at a distance 2r will be b) 2A c) A/2frequency does not change if the length of the wire is changed to 21 cm. The frequency of the tuning fork (in Hertz) must be a) 200 b) 210 c) 205 d) 215

100. A tuning fork vibrating with a sonometer having 20 cm wire produces 5 beats per second. The beat

101. When a sound wave of wavelength λ is propagating in a medium, the maximum velocity of the particle is equal to the velocity. The amplitude of wave is

a) λ c) $\frac{\lambda}{2\pi}$

102. In a medium sound travels 2 km in 3 sec and in air, it travels 3 km in 10 sec. The ratio of the wavelengths of sound in the two media is

a) 1:8 c) 8:1d)20:9b) 1:18

	a) Air	b) Water	c) Vacuum	d) Steel
104	The fundamental frequen	cy of a sonometre wire is $\it n$. If its radius is doubled and	d its tension becomes half,
	the material of the wire re	emains same, the new funda		
	a) n	b) $\frac{n}{\sqrt{2}}$	c) $\frac{n}{2}$	d) $\frac{n}{2\sqrt{2}}$
105		$\sqrt{2}$ frequency f is moving tow		2 4 2
103				
				acy heard by the motorist is $2n (n + n) f$
	a) $\frac{(\nu + \nu_m)j}{m+m}$	b) $\frac{(v+v_m)f}{v-v_b}$	c) $\frac{2v_b(v+v_m)j}{v^2-v^2}$	d) $\frac{2v_m(v + v_b)j}{2v_b^2}$
106	·-	$v - v_b$ air is 350 m/s . Then the fu	~	~
100	50 <i>cm</i> , will be	an is 550 mys. Then the fu	ilualilelital li equelicy of all	open organ pipe of length
	a) 350 <i>Hz</i>	b) 1.75 <i>Hz</i>	c) 900 Hz	d) 750 <i>Hz</i>
107	-	in a sound wave is tripled,	•	
107	a) 9	b) 3	c) 6	d) $\sqrt{3}$
100		•		3 , -
108	=	f frequency 8 kHz is moving	= -	-
		e sound waves. The speed o	or sound in air is 320 m/s. i	the frequency of the siren
	heard by the car driver is	1)025111) = 25 11	1) 7 5 1 11
400	a) 8.5 kHz	b) 8.25 kHz	c) 7.25 kHz	d) 7.5 kHz
109		l of frequency 170 Hz is ap	-	
		ange in the wavelength of	sound heard by the observ	er is (speed of sound in air
	$= 340 \ ms^{-1})$	1200	2.0.4	D 0 F
440	a) 0.1 <i>m</i>	b) 0.2 <i>m</i>	c) 0.4m	d) 0.5 <i>m</i>
110		ncy n_1 and n_2 produces n b	eats per second. If n_2 and r	are known, n_1 may be
	given by			n _o
	a) $\frac{n_2}{n} + n_2$	b) n ₂ n	c) $n_2 \pm n$	d) $\frac{n_2}{n} - n_2$
111.	11	is doubled and the frequen	cy reduced to one-fourth, t	he intensity of sound at the
			'ATION	,
	same point will be a) Increased by a factor of	F2 PLUS EDUC	b) Decreased by a factor of	of 2
	c) Decreased by a factor of	of 4	d) Unchanged	
112	•	es moving at right angles to	,	they produce
	a) Beats	b) Interface	c) Stationary waves	d) Lissajous figure
113	-	ame material are vibrating	-	, ,
		2 and ratio of the length of		
	radii of the strings is	O	0 0	
	a) 2:1	b) 4:1	c) 3:2	d) 8:1
114	-	g a mass of 1.0 g, is fixed at	both the ends. The tension	n in the string is 0.5 N. the
		using an external vibrator		•
	between the successive no	=		• • • •
	a) 5	b) 6	c) 2	d) 3/2
115	The equation of a cylindri			, ,
	a) $y = a \sin \omega t$	1 0	b) $y = a \sin(\omega t - kr)$	
			d) $y = \frac{a}{r}\sin(\omega t - kr)$	
	c) $y = \frac{a}{\sqrt{r}}\sin(\omega t - kr)$		$a) y = -\sin(\omega t - \kappa r)$	
116	The sound carried by air f	rom a sitar to a listener is a	wave of the following type	e
	a) Longitudinal stationary	I	b) Transverse progressive	e
	c) Transverse stationary		d) Longitudinal progressi	ve
117	The line of a sight of a jet j	plane makes an angle of 60	$^{ m 0}$ with the vertical, and the	sound appears to be
	coming from over the hea	d of the observer. The spee	d of jet plane is (taking spe	eed of sound waves to be v)
	a) <i>v</i>	b) $v/\sqrt{3}$	c) $v\sqrt{3}$	d) 2 <i>v</i>

118.	A spherical source of pow a distance $200 m$ is	er 4 <i>W</i> and frequency 800	<i>Hz</i> is emitting sound wave	s. The intensity of waves at
	a) $8 \times 10^{-6} W/m^2$	b) $2 \times 10^{-4} W/m^2$	c) $1 \times 10^{-4} W/m^2$	d) $4 W/m^2$
119.			32 m/s. The string forms st	
	5.0 cm apart. The frequen	cy of vibration of the string	g in Hz is	_
	a) 40	b) 30	c) 20	d) 10
120.	'SONAR' emits which of th	ne following waves	,	,
	a) Radio waves	b) Ultrasonic waves	c) Light waves	d) Magnetic waves
121.	•	=		cies occurs in the ratio 5/3.
		(Velocity of sound is 340 n	= = =	•
	a) 540 m/s	b) 270 m/s	c) 85 m/s	d) 52.5 <i>m/s</i>
122.	•	on cannot be heard on the		,
		s high frequency sound wa		
		material medium for prop		
	•	bed in the moon's atmosph	· ·	
	•	bed in the earth's atmosph		
123.	-	-	e is given by y=A sin (100 π	t-3x), find the distance
	between 2 particles havin	_		,
			π	π
	a) $\frac{\pi}{9}$ m	b) $\frac{\pi}{18}$ m	c) $\frac{1}{6}$ m	d) $\frac{\pi}{3}$ m
124.	Beats are produced with t	the help of two sound wave	es of amplitudes 3 and 5 un	its. The ratio of maximum
	to minimum intensity in t		•	
	a) 2:1		c) 4:1	d) 16:1
125.	_		ng and reaches the fixed en	
	reflected back with		O .	
	a) The same phase as the	incident pulse but with vel	ocity reversed	
		with no reversal of velocit	-	
		incident pulse with no reve		
	d) A phase change of 180°			
126.			hill. Car blows horn at a dis	tance of 1800 m from the
		10s, the speed of sound (in		
		b) 320		d) 360
127.				give a maximum intensity I_0 .
			oved to give intensity $I_0/2$?	
	a) $\lambda/2$	b) λ/3	c) λ/4	d) λ/8
128.	* *			seconds) of reverberation of
		ensions double of those of	`	,
			c) 2	d) 4
	a) $\frac{1}{2}$	b) 1	•) -	, -
129.	Two wires made up of sar	ne material are of equal ler	ngths but their radii are in t	he ratio 1:2. On stretching
	each of these two string b	y the same tension, the rati	io between the fundamenta	l frequencies is
	a) 1:2	b) 2:1	c) 1:4	d) 4:1
130.	In the 3 rd overtone of an o	ppen organ pipe, there are ((N-stands for nodes and A-formation A-fo	for antinodes)
	a) 2 <i>N</i> , 3 <i>A</i>	b) 3 <i>N</i> , 4 <i>A</i>	c) 4N, 5A	d) 5 <i>N</i> , 4 <i>A</i>
131.	The equation of a spherical			
			c) $y = \frac{a}{\sqrt{r}}\sin(\omega t - kr)$	$d) y = a \sin(xt + lm)$
400			· · · · · · · · · · · · · · · · · · ·	
132.	A source and an observer	are moving towards each of	other with a speed equal to	$\frac{1}{2}$ where v is the speed of

sound. The source is emitting sound of frequency n. The frequency heard by the observer will be

G	nl	us	F	dı	ıc	ai	tio	n
U	$\boldsymbol{\nu}$	uэ		uı	16	u	$\cdot \cdot \cdot \cup$,,,

	a) Zero	b) <i>n</i>	c) $\frac{n}{3}$	d) 3n
133.	frequency registered by the registered is f_2 . If the peed		need 34ms^{-1} . The train soun's speed is reduced to 17 non the ratio f_1/f_2 is	
	a) 18	b) $\frac{1}{2}$	c) 2	d) $\frac{19}{18}$
	and in air it is 300 ms^{-1} . T a) 200 Hz	he frequency of sound reco b) 300 Hz	de water. The speed of sour orded by an observer who i c) 120 Hz	s standing in air is d) 600 Hz
135.			y=6sin 2 π (2t-0.1x), wher es 2 mm apart at any instar c) 54°	e x and y are in mm and t is nt is d) 72°
	•	rigid support. A transverse	e pulse is excited at its free	,
	a) <i>x</i>	b) $\frac{1}{x}$	c) $\frac{1}{\sqrt{x}}$	d) \sqrt{x}
	In a sine wave, position of travelling along positive <i>x</i>	•	t = 0 is shown in figure. The	ne equation for this wave
	x x	₹1.	>	
138.	The frequency of fundame			
	A stationary point source	of sound emits sound unifo a distance of 4m and 9m re	ormly in all directions in a respectively from the source	,
	a) $\frac{3}{2}$	b) $\frac{4}{9}$	c) $\frac{2}{3}$	d) $\frac{9}{4}$
140.	Walls of auditorium shoul		c) Amplifion	d) Modifier
141.			c) Amplifier Then it is at a distance of 0.5 d of sound in air is 330 m/	
		V V V		
	a) 10 <i>m/s</i>	b) 20 <i>m/s</i>	c) 30 m/s	d) 40 <i>m/s</i>
142.	A micro-wave and an ultra (approximately)	asonic sound wave have th	e same wavelength. Their f	requencies are in the ratio

 $143.\ A\ uniform\ wire\ of\ length\ L,\ diameter\ D\ and\ density\ S\ is\ stretched\ under\ a\ tension\ T.\ the\ correct\ relation$

c) $10^2 : 1$

a) $10^6 : 1$

b) $10^4 : 1$

between its fundamental frequency \emph{f} , the length L and the diameter D is

d) 10:1

144. Which two of the given transverse waves will give	e stationary waves when	get superimposed
$z_1 = a\cos(kx - \omega t) \dots (A)$		
$z_2 = a\cos(kx + \omega t)(B)$		
$z_3 = a\cos(ky - \omega t) \dots (C)$		
a) A and B b) A and C	c) B and C	d) Any two
145. In 1 m long open pipe what is the harmonic of res	sonance obtain with a tui	ning fork of frequency 480 Hz?
a) First b) Second	c) Third	d) Fourth
146. Given that $y = A \sin \left[\left(\frac{2\pi}{\lambda} (ct - x) \right) \right]$, where y and	x are measured in metro	es. Which of the following
statements is true		
a) The unit of λ^{-1} is same as that of $\frac{2\pi}{\lambda}$	b) The unit of λ is sa	time as that of x but not of A
c) The unit of c is same as that of $\frac{2\pi}{\lambda}$	d) The unit of $(ct -$	x) is same as that of $\frac{2\pi}{\lambda}$
147. A source of sound gives 5 beats s ⁻¹ when sounde harmonic of the source together with a source of frequency of the source?		
a) 105 Hz b) 205 Hz	c) 95 Hz	d) 100 Hz
148. A sound wave of wavelength 32 $\it cm$ enters the tul	oe at <i>S</i> as shown in the fig	gure. Then the smallest radius r
so that a minimum of sound is heard at detector <i>l</i>	D is	
s t		
() [] D	>	
a) 7 cm b) 14 cm	c) 21 <i>cm</i>	d) 28 <i>cm</i>
149. The frequency of a stretched uniform wire under		
of a closed tube. If the tension in the wire is incre		
the closed tube. The initial tension in the wire is	asea by 6 iv, it is in reson	idirec with the mot overtone of
a) 1 N b) 4 N	c) 8 N	d) 16 <i>N</i>
150. Stationary waves	c) o N	d) 101V
a) Transport energy	b) Does not transpor	rt anargy
	d) Both (b) and (c)	it ellergy
c) Have nodes and antinodes	, , , , , , , , , , , , , , , , , , , ,	0-4 kg = -1 is nonnegonted by
151. A transverse wave propagating on a stretched str the equation $y = 0.2 \sin(1.5x + 60t)$ where x is i		
newton) is	a) 1 20	4) 1 00
a) 0.24 b) 0.48	c) 1.20	d) 1.80
152. If the length of a closed organ pipe is 1m and velo second note is	,	
a) $4 \times \frac{330}{4} Hz$ b) $3 \times \frac{330}{4} Hz$	c) $2 \times \frac{330}{4} Hz$	d) $2 \times \frac{4}{330} Hz$
153. Consider the following	т	330
I. Waves created on the surface of a water pond b	y a vibrating sources	
II. Wave created by an oscillating electric field in	· -	
III. Sound waves travelling under water	un	
Which of these can be polarized		
a) I and II b) II only	c) II and III	d) I II and III
		d) I, II and III
154. A plane wave is represented by $x = 1.2 \sin(314t)$ in x and y direction in meters and t is time in second		y are distances measured along
a) A wavelength of 0.25 m and travels in + $ve \times d$		
h) A wavelength of 0.25 m and travels in $+ ve x$ d		

- c) A wavelength of 0.5 m and travels in -ve y direction
- d) A wavelength of 0.5 m and travels in -ve x direction
- 155. A particle on the trough of a wave at any instant will come to the mean position after a time(T=time period)

c) T

- d) 2T
- 156. An open organ pipe of length / vibrates in its fundamental mode. The pressure vibration is maximum
 - a) At the two ends

- b) At the distance 1/2 inside the ends
- c) At the distance 1/4 inside the ends
- d) At the distance 1/8 inside the ends
- 157. A wave travelling along the x-axis is described by the equation $y(x, t) = 0.005 \cos{(\alpha x \beta t)}$. If the wavelength and the time period of the wave are 0.08m and 2.0s, respectively, than α and β in appropriate unit are
 - a) $a=25.00\pi$, $\beta \pi$
- b) $\alpha = \frac{0.08}{\pi}$, $\beta = \frac{2.0}{\pi}$ c) $\alpha = \frac{0.04}{\pi}$, $\beta = \frac{1.0}{\pi}$ d) $\alpha = 12.5\pi$, $\beta = \frac{\pi}{2.0}$
- 158. A tuning fork gives 5 beats with another tuning fork of frequency 100 Hz. When the first tuning fork is loaded with wax, then the number of beats remains unchanged, then what will be the frequency of the first tuning fork
 - a) 95 Hz
- b) 100 Hz
- c) 105 Hz
- 159. A plane wave is described by the equation $y = 3\cos\left(\frac{x}{4} 10t \frac{\pi}{2}\right)$. The maximum velocity of the particles of the medium due to this wave is
 - a) 30

- d) 40
- 160. The displacement-time graphs for two sound waves *A* and *B* are shown in the figure, then the ratio of their intensities I_A/I_B is equal to

a) 1:4

b) 1:16

c) 1:2

- d) 1:1
- 161. Two waves coming from two coherent sources, having different intensities interfere their ratio of maximum intensity to the minimum intensity is 25. The intensities of the sources are in the ratio
 - a) 25:1

- b) 25:16
- c) 9:4

- 162. Two points on a travelling wave having frequency 500 Hz and velocity 300 ms⁻¹ are 60° out of phase, then the minimum distance between two points is
 - a) 0.2

b) 0.1

c) 0.5

- d) 0.4
- 163. An observer A sees an asteroid with a radioactive element moving by at a speed =0.3c and measure the radioactivity decay time to be T_A . Another observer B is moving with the asteroid and measures its decay time as T_B . Then T_A and T_B are released as
 - a) $T_B < T_A$

b) $T_A = T_B$

c) $T_B > T_A$

- d) Either (A) or (c) depending on whether the asteroid is approaching or moving away from A
- 164. To raise the pitch of a stringed musical instrument the player can
 - a) Loosen the string
- b) Tighten the string
- c) Shorten the string
- d) Both (b) and (c)

				•
165.	The displacement of a pa	rticle is given by		
	$x = 3\sin(5\pi t) + 4\cos(5t)$	$\pi t)$		
	The amplitude of the par	ticle is		
	a) 3	b) 4	c) 5	d) 7
166.	Frequency of a sonomete	\mathbf{r} wire is n . Now its tension	is increased 4 times and its	s length is doubled then
	new frequency will be			
	a) $n/2$	b) 4n	c) 2n	d) n
167.			Hz. What frequency will be	•
	is also opened?	1 5	1 3	,
	a) 200,400,600,800		b) 200,300,400,500	
	c) 100,300,500,700		d) 100,200,300,400	
168	•	ndamental frequencies of t	hree segments into which a	string is divided then the
100.		quency <i>n</i> of the string is giv	_	sering is divided, then the
		quency not the string is giv	4 4 4 4	
	a) $\frac{1}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$		b) $\frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n_1}} + \frac{1}{\sqrt{n_2}} + \frac{1}{\sqrt{n}}$	=
	1 2 3		•	3
	c) $\sqrt{n} = \sqrt{n_1} + \sqrt{n_2} + \sqrt{n_2}$	ι_3	d) $n = n_1 + n_2 + n_3$	
169.	Sound waves in air alway	_		
	a) Of the inherent charac	teristics of sound waves in	air	
	b) Air does not have a mo	odulus of rigidity		
	c) Air is a mixture of seve	eral gases		
	d) Density of air is very s	mall		
170.	The first overtone in a clo	osed pipe has a frequency		
	a) Same as the fundamen	ital frequency of an open tu	be of same length	
	b) Twice the fundamenta	l frequency of an open tube	e of same length	
	c) Same as that of the firs	st overtone of an open tube	of same length	
	d) None of the above			
171.	An observer moves towa	rds a stationary source of s	ound of frequency n . The approximately	pparent frequency heard by
			c, then the velocity of the ob	
	a) 166 <i>m/sec</i>	b) 664 <i>m/sec</i>	c) 332 m/sec	d) 1328 m/sec
172.	-	on cannot be observed for	,	,
	a) Refraction	b) Interference		d) Polarisation
173.	,	,	xed at both ends and stretch	,
	= =	-	ts with amplitude=0.5 cm.	
	transverse velocity is	.6		
	a) 9.42ms ⁻¹	b) 3.14ms ⁻¹	c) 1.57ms ⁻¹	d) 6.28ms ⁻¹
174	•		the listener hearts its 390 H	*
1, 1,	a) The listener is moving		b) The source is moving t	
	c) The listener is moving		d) The listener has a defe	
175	=	=	•	ng frequency of the scanner
175	_		$-s^{-1}$. The wavelength of s	
	to	siloulu iii a tissue is 1,7 kiii	.— 3 , The wavelength of s	dullu ili tile tissue is close
		b) $8 \times 10^{-3} m$	c) $4 \times 10^{-3} m$	d) 0 × 10=4
176	a) $4 \times 10^{-4} m$		•	d) $8 \times 10^{-4} m$
1/6.			of two waves $y_1 = 0.05\sin(3x^2)$	
			ers and t is in second. What	is the amplitude of the
	particle at $x = 0.5$ m? Given		204	D 40.0
. -	a) 2.7 cm	b) 5.4 cm	c) 8.1 cm	d) 10.8 cm
177.	-	•	th a sonometer wire of vibra	ating length is 50 cm. what
	is the frequency of the tu	-		
	a) 196 Hz	b) 284 Hz	c) 375 Hz	d) 460 Hz

178.	In Melde's experiment, the required to form two look	aree loops are formed by pu	itting a weight of 8 g in a m	assless pan. The weight
	a) 18 g	b) 8 g	c) 36 g	d) 24 g
		, ,	, .	undamental note produced
1/ /.	_	same length will be of frequ		undamental note produced
				1) 4.6
	a) f/2	b) <i>f</i>	c) 2 <i>f</i>	d) 4 <i>f</i>
180.		d string is increased by 69%	%. In order to keep its frequ	iency of vibration constant,
	its length must be increase	sed by		
	a) 20%	b) 30%	c) √69%	d) 69%
181.	Oxygen is 16 times heavi	er than hydrogen. Equal vol	lumes of hydrogen and oxy	gen are mixed. The ratio of
		ture to that in hydrogen is		
	1	_	Г.	<u> </u>
	a) √8	b) $\sqrt{\frac{2}{17}}$	c) $\sqrt{\frac{1}{8}}$	d) $\frac{32}{17}$
	, 🕶	$\sqrt{17}$	√8	$\sqrt{17}$
182.	=	nd equally in all direction in pectively from the source. To b) 2:3		-
183.	Sound waves travel at 35	0 m/s through a warm air a	and at 3500 m/s through b	rass. The wavelength of a
	700 Hz acoustic wave as	it enters brass from warm a	air	
	a) Decreases by a factor 2	20	b) Decreases by a factor 1	10
	c) Increases by a factor 2		d) Increases by a factor 1	
184	-	and B, have the same leng		
101.		quencies n_A and n_B respect		resonate in the
		quencies n_A and n_B respect		
	a) $n_A = n_B$		b) $n_A > n_B$	din dh di Cali
	c) $n_A < n_B$. 1	d) Either (b) or (c) deper diameters	, -
185.		$(80^{\circ})y o mm, t o s, x o m.$ article having path difference		e equation, phase difference
	a) $\pi/4$	b) π	c) $\pi/3$	d) $\pi/2$
186.	, ,	,		1% the percentage changes
	its frequency is			-, F8
		99	c) 1	d) 2
	a) $\frac{100}{101}$	b) $\frac{99}{100}$	c) I	u) 2
			frequency are placed 2.0 r	n apart in a box. A sensitive
1071	_	istance of $4.0m$ from their i		-
		box is slowly rotated until t		
	•	•	•	•
		lpoint of the speakers and t	-	
		observed in the microphon		=
	a) 0.2 <i>m</i>	b) 0.4 <i>m</i>	c) 0.6 m	d) 0.8 <i>m</i>
188.	A tuning fork makes 256	vibrations per second in aiı	r. When the velocity of sou	nd is $330 m/s$, then
	wavelength of the tone en	nitted is		
	a) 0.56 m	b) 0.89 <i>m</i>	c) 1.11 <i>m</i>	d) 1.29 <i>m</i>
189.	If separation between scr	een and source is increased	d by 2% what would be the	effect on the intensity
	a) Increases by 4%	b) Increases by 2%	c) Decreases by 2%	d) Decreases by 4%
190	•	•	•	is is propagating in a string
_, 01		n. The expression for this w		LL
	a) $y(x,t) = 0.5 \sin(2\pi x - 1)$		b) $y(x, t) = 0.5 \cos(2\pi x - 1)$	$+4\pi t$)
	c) $y(x,t) = 0.5 \sin(2\pi x - 1)$		d) $y(x,t) = 0.5 \cos(2\pi x - 1)$	
	$(i) y(x, i) = 0.5 \sin(\pi x -$	2111)	$u_j y(x, t) = 0.5 \cos(2\pi x - 1)$	- Δπι)

of frequency immersed in	y 256 Hz is in resonance with an metre that will be in resonan	$1/\sqrt{7}$ time the length of the acce with the same tuning fork	is (specified gravity of iron=8)			
a) √8	b) $\sqrt{6}$	c) $\frac{1}{\sqrt{6}}$	d) $\frac{1}{\sqrt{8}}$			
a) Isotherm 193. A plane EM component field compo a) 2×10^{-8}	192. The phenomenon of sound propagation in air is a) Isothermal process b) Isobaric process c) Adiabatic process d) None of these 193. A plane <i>EM</i> wave of frequency 30 <i>MHz</i> travels in free space along the <i>x</i> -direction. The electric field component of the wave at a particular point of space and time $E = 6 V/m$ along <i>y</i> -direction. Its magnetic field component <i>B</i> at this point would be a) 2×10^{-8} T along <i>z</i> -direction b) 6×10^{-6} T along <i>x</i> -direction					
-	T along y-direction	d) 6×10^{-8} T alo	8			
194. In sine wav	e, minimum distance between	1	ne speed is			
a) $\frac{\lambda}{2}$	b) $\frac{\lambda}{4}$	c) $\frac{\lambda}{2}$	d) λ			
4	T	J	e frequency n of the string is given			
a) $n = n_1 + n_2$	$n_2 + n_3 + \dots$	b) $n = \sqrt{n_1 \times n_2}$	$\times n_3 \times$			
c) $\frac{1}{n} = \frac{1}{n_1} +$	$\frac{1}{n_2} + \frac{1}{n_3} + \dots$	d) None of these				
intensity of from source	threshold hearing is $10^{-12}Wn$	n^{-2} then, what is the intensit	ss of acoustic power in air and y level at a distance of 4000 cm			
a) Aero	b) 54 dB	c) 64 <i>dB</i>	d) 44 <i>dB</i>			
	on of sound wave is $\sin(62.4x + 316t)$					
	ngth of this wave is	BUGATION				
a) 0.2 unit	b) 0.1 unit	c) 0.3 unit	d) Cannot be calculated			
			z. This speed is $33 m/s$. If speed of			
	0 m/s, then the observed frequ	-				
a) 90 <i>Hz</i>	b) 100 Hz	c) 91 Hz	d) 110 <i>Hz</i>			
	tube is held vertically in wate	_	_			
	are observed at two successive ound is 340 ms ⁻¹ , then the fre	_				
a) 128 Hz	b) 256 Hz	c) 384 Hz	d) 500 Hz			
•	be of length l vibrates in fundar	•	-			
a) 1/4 from	_	b) The middle of				
c) The ends		d) At 1/8 from er	• •			
-	of sound in gas of density ρ at a	•				
		_	Г			
$a\left(\frac{p}{\rho}\right)^2$	b) $\left(\frac{p}{\rho}\right)^{\frac{3}{2}}$	c) $\sqrt{\frac{\rho}{p}}$	d) $\sqrt{\frac{p}{\rho}}$			
202. A sound abs	sorber the sound level by 20 dl	B. The intensity decreases by	a factor of			
a) 1000	b) 10000	c) 10	d) 100			
	ncy of fundamental note in an o e heard. This indicates that org		ving air, frequencies 720 Hz and			
	osed at one end	b) A pipe open at d) Having holes l				

- 204. When a wave travels in a medium, the particle displacement is given by the equation y = $a \sin 2\pi (bt - cx)$ where a, b and c are constants. The maximum particle velocity will be twice the wave velocity if
 - a) $c = \frac{1}{\pi a}$
- b) $c = \pi a$
- c) b=ac

- d) $b = \frac{1}{ac}$
- 205. A transverse sinusoidal wave moves along a string in positive x-direction at a speed of 10cms⁻². The wavelength of the wave is 0.5 m and its amplitude is 10.cm at a particular time t, the snap-shot of the wave is shown in figure. The velocity of point P when its displacement is 5 cm is

- a) $\frac{\sqrt{3\pi}}{50} \hat{j} m s^{-1}$
- b) $-\frac{\sqrt{3\pi}}{50}\hat{j}ms^{-1}$ c) $\frac{\sqrt{3\pi}}{50}\hat{i}ms^{-1}$
- 206. A man x can hear only upto 10 kHz and another man y upto 20 kHz. A note of frequency 500 Hz is produced before them from a stretched string. Then
 - a) Both will hear sounds of same pitch but different quality
 - b) Both will hear sounds of different pitch but same quality
 - c) Both will hear sounds of different pitch and different quality
 - d) Both will hear sounds of same pitch and same quality
- 207. Which of the following is the example of transverse wave
 - a) Sound waves

b) Compressional waves in a spring

c) Vibration of string

- d) All of these
- 208. The phase difference between two points is $\pi/3$. If the frequency of waves is 50 Hz, then what is the distance between two points? (Given $v=330 ms^{-1}$)
 - a) 2.2 m
- b) 1.1 m
- c) 0.6 m
- d) 1.7 m

- 209. The frequency of the sinusoidal wave
 - $y = 0.40 \cos[2000t + 0.80x]$ would be
 - a) $1000 \pi Hz$
- b) 2000 Hz
- c) 20 Hz
- 210. An unknown frequency x produces 8 beats per seconds with a frequency of 250 Hz and 12 beats with 270 Hz source, then x is
 - a) 258 *Hz*
- b) 242 Hz
- c) 262 Hz
- d) 282 Hz

- 211. Which of the following functions represent a wave?
 - a) $(x vt)^2$
- b) ln(x + vt)

- 212. Two uniform strings A and B made of steel are made to vibrate under the same tension. If the first overtone of A is equal to the second overtone of B and if the radius of A is twice that of B, the ratio of the lengths of the strings is
 - a) 2:1

b) 3:4

c) 3:2

- d) 1:3
- 213. It is possible to distinguish between the transverse and longitudinal waves by studying the property of
 - a) Interference
- b) Diffraction
- c) Reflection
- d) Polarisation

oled, l
f
•
vill
rial
1 Iai
the
th of
ıd
1

	V. Is independent of temp			
	Choose the correct answer	er		
	a) Only I and II are true		b) Only I and III are true	
	c) Only II and III are true		d) Only I and IV are true	
227	. In stationary waves, dista	nce between a node and its	s nearest antinode is 20 <i>cm</i>	. The phase difference
	between two particles ha	ving a separation of 60 cm	will be	
	a) Zero	b) $\pi/2$	c) π	d) $3\pi/2$
228	. The source of sound gene	rating a frequency of 3kHz	reaches an observer with a	a speed of 0.5 times, the
	velocity of sound in air. T	he frequency heard by the	observer is	
	a) 1 kHz	b) 2 kHz	c) 4 kHz	d) 6 kHz
229				onds and x is in meters. The
	distance through which the	he wave moves in 8 <i>sec</i> is ((in meter)	
	a) 8	b) 16	c) 2	d) 4
230		n a string of liner mass den		
	$y = 0.02(m) \sin \left[2\pi \left(\frac{t}{0.044} \right) \right]$	$\left(\frac{x}{(s)} - \frac{x}{0.50(m)}\right)$ the tension i	n the string is	
	a) 4.0N	b) 12.5N	c) 0.5N	d) 6.25N
231	•	$s \lambda = 6000$ Å. Then wave nu	,	a, s. _ s.
	a) $166 \times 10^3 m^{-1}$		c) $1.66 \times 10^6 m^{-1}$	d) $1.66 \times 10^7 m^{-1}$
222	•	•	h a force of 500 N. A transv	•
232	-	re is traveling along. Then		erse wave or length 4.0 m
	a) 50ms^{-1}		c) $2500 \mathrm{ms}^{-1}$	d) 12.5ms ⁻¹
222	•			,
233	the velocity of sound is	eii wnich is 19.6 <i>m</i> deep. Ec	ino souna is neard after 2.0	6 sec (after dropping) then
		b) 326.7 <i>m/sec</i>	c) 300.4 m/sec	d) 290 5 m/sec
234	•		g fork occurs at 16 <i>cm</i> and :	
251		n/s, the frequency of tuning		second at 17 cm. If the
	a) 500	b) 300		d) 165
225		th 2 beats in 0.04 second. T		u) 103
233	a) $50 Hz$	b) 100 <i>Hz</i>	c) 80 Hz	d) None of these
226	. A standing wave is repres	,	C) 60 HZ	u) None of these
230	$Y = A \sin(100t) \cos(0.01)$			
	, ,	•	l v ia in matra. Tha valacity	r of ways is
		ilmetre, i is ili secolius alic	1 x is in <i>metre</i> . The velocity	of wave is
	a) $10^4 m/s$		b) $1 m/s$	
205	c) $10^{-4}m/s$	000 11 (1:	d) Not derivable from abo	
237	•	•	a medium in which the ve	•
	·		the neighbouring antinode	
	a) 1 m	b) 2 m	c) 3 m	d) 4 m
238	O	O .	n produce 16 beats in 20 s	ec. When each pipe is
		cal mode calculate the veloc	•	
	a) $303 ms^{-1}$	b) $332 ms^{-1}$	c) $323.2 ms^{-1}$	d) $300 \ ms^{-1}$
239	· The fundamental frequen	cy of a closed pipe is 220 H	dz . If $\frac{1}{4}$ of the pipe is filled w	rith water, the frequency of
	the first overtone of the p	ipe now is		
	a) 220 <i>Hz</i>	b) 440 <i>Hz</i>	c) 880 Hz	d) 1760 <i>Hz</i>
240	. A fork of unknown freque	ency gives four beats s^{-1} w	hen sounded with another	of frequency 256. The fork
	-	• •		frequency of the unknown
	fork is	S		• •
	a) 256 Hz	b) 252 Hz	c) 264 Hz	d) 260 Hz

GPLUS EDUCATION WEB: WWW.GPLUSEDUCATION.ORG

241. Which of the following equations represents a wave?

a) $y = A \sin \omega t$		b) $y = A \cos kx$	
c) $y = A \sin(at - dt)$	(x+c)	$d) y = A(\omega t - kx)$)
242. A person feels 2.5%	difference of frequency o	f a motor-car horn. If the n	notor-car is moving to the person
and the velocity of s	sound is $320 m/sec$, then t	the velocity of car will be	
a) 8 <i>m/s</i> (approx.)	b) 800 <i>m/s</i>	c) 7 <i>m/s</i>	d) $6m/s$ (approx.)
243. A string is producing	ıg transverse vibration wh	lose equation is $y = 0.021$	$\sin(x + 30t)$, Where x and y are in
meters and t is in so	econds. If the linear densit	ty of the string is 1.3×10^{-1}	$^4kg/m$, then the tension in the
string is N will be			
a) 10	b) 0.5	c) 1	d) 0.117
244. a segment of wire v	ribrates with a fundamenta	al frequency of 450 Hz und	er a tension of 9 kg-wt. then
tension at which th	e fundamental frequency o	of the same wire becomes s	900 Hz is
a) 36 kg-wt	b) 27 kg-wt	c) 18 kg-wt	d) 72 kg-wt
245. An organ pipe <i>P</i> clo	sed at one end vibrates in	its first harmonic. Another	organ pipe Q open at both ends
vibrates in its third	harmonic. When both are	in resonance with a tuning	g fork, the ratio of the length of P to
that of Q is			
a) 1/2	b) 1/4	c) 1/6	d) 1/8
246. The apparent frequ	ency of a note is 200 Hz, w	vhen a listener is moving w	rith a velocity of 40 ms ^{–1} towards a
stationary source. V	When he moves away from	the same source with the s	ame speed, the apparent frequency
of the same notes is	s 160 Hz. The velocity of so	ound in air in ms^{-1} is	
a) 340	b) 330	c) 360	d) 320
247. Two waves having	the intensities in the ratio	of 9:1 produce interferen	ce. The ratio of maximum to the
minimum intensity	, is equal to		
a) 2:1	b) 4:1	c) 9:1	d) 10 : 8
248. In a resonance pipe	the first and second resor	nance are obtained with at	depth 22.7 cm and 70.2 cm
respectively. What	will be the correction?		
a) 1.05 cm	b) 115.5 cm	c) 92.5 cm	d) 113.5 cm
249. The equation for sp	herical progressive wave	is (where r is the distance	from the source)
			(kx) d) $y = \frac{a}{r}\sin(\omega t - kx)$
	٧.	-	•
		the accompaniment of a ha	rmonium because
	notes of the harmonium is	too large	
•	monium are too shrill		
-	used in the harmonium		
	is used in the harmonium		
	ring is not the transverse v		
a) X-rays	b) γ - rays	c) Visible light wa	
	_	_	long uniform string is vibrating in
		• •	the pipe. If the tension in the wire
is 50N and the spee	ed of sound $320 ms^{-1}$, the	mass of the string is	
a) 5 g	b) 10 g	c) 20 g	d) 40 g
253. A metal wire of line	${ m er}$ mass density of 9.8 ${ m \it gm}^-$	¹ is stretched with a tensio	n of kg-wt between two rigid
supports 1 m apart	. The wire passes at its mid	ddle point between the pol	es of a permanent magnet and it
vibrates in resonan	ce when carrying an alteri	nating current of frequency	n. the frequency n of the
alternating sources	is		
a) 50 Hz	b) 100 Hz	c) 200 Hz	d) 25 Hz
254. In an experiment w	rith sonameter a tuning for	k of frequency 256 Hz rese	onates with a length of 25 cm and
another tuning fork	resonates with a length o	f 16 cm, tension of the stri	ng remaining constant the
frequency of the se	cond tuning fork is		
a) 163.84 Hz	b) 400 Hz	c) 320 Hz	d) 204.8 Hz

				•		
255.	On producing the waves of frequency $1000 Hz$ in a Kundt's tube, the total distance between 6 successive nodes is 85 $ cm$. Speed of sound in the gas filled in the tube is					
	a) $330 m/s$	b) $340 m/s$	c) 350 m/s	d) 300 <i>m/s</i>		
256.	•	•	tring is given by $y = 5 \sin \frac{\pi}{3}$			
2001				-cos 40nt, where x and y		
	are in cm and t in second.	-	•	D 4		
0.5.5	a) 1.5 <i>cm</i>	b) 3 cm	c) 6 cm	d) 4 cm		
257.		sive wave can be given by	$y=15 \sin (660 \pi t - 0.02 \pi x)$	cm, the frequency of the		
	wave is	L) 242 H-	a) 265 H-	4) ((0 II-		
250	a) 330 Hz	b) 342 Hz	c) 365 Hz	d) 660 Hz		
230.	The displacement y of a pa	article in a medium can be	expressed as $y = 10^{-6} \sin \theta$	$\left(100t + 20x + \frac{\pi}{4}\right)$ m, where		
	t is in second and x in met	-				
	a) 2000 ms^{-1}	b) 5 ms ⁻¹	c) 20 ms ⁻¹	d) $5\pi \text{ ms}^{-1}$		
259.	Two sound waves having	-	-			
	a) 2λ	b) $\lambda/2$	c) λ/6	d) $\lambda/3$		
	A transverse wave is repr	esented by the equation				
	$y = y_0 \sin \frac{2\pi}{\lambda} (vt - x)$					
	,,	avinavna nautiala valaaituv		. vvol o oitev		
			equal to two times the wave			
261	a) $\lambda = 2\pi y_0$	b) $\lambda = \pi y_0/3$	c) $\lambda = \pi y_0/2$	d) $\lambda = \pi y_0$		
261.	=		ncies (v-1),v,(v+1). They su	perpose to give beat. The		
	number of beats produced		-) 2	J) 1		
262	a) 4	b) 3	c) 2	d) 1		
262.	_	rves represents correctly (the oscillation given by $y =$	$y_0 \sin(\omega \iota - \varphi)$, where $0 <$		
	$\phi < 90$					
	*					
	$D \sim A$					
	$B \setminus B$	JPLUS EDU	LAHON			
	A C C	→				
	1					
	2.4	1) D) (1) D		
262	a) <i>A</i>	b) <i>B</i>	c) <i>C</i>	d) <i>D</i>		
263.	Quality depends on	1.) I I	-) T'l	J) F		
264	a) Intensity	b) Loudness	c) Timbre	d) Frequency		
264.	-		frequency f in air. When th	e cylinder vertically		
	immersed into water by h			J) <i>f</i> / /		
265	a) <i>f</i>	b) 2 <i>f</i>	c) $f/2$	d) $f/4$		
265.	=	tween two sound waves of	f wavelength λ is 60°, the co	rresponding path		
	difference is	1		1		
	a) $\frac{\lambda}{6}$	b) $\frac{\lambda}{2}$	c) 2λ	d) $\frac{\lambda}{4}$		
	U	L	mperature of the medium c	4		
200.	following will change	aves in a medium, ii die te	imperature of the medium e	nanges, then which of the		
	a) Amplitude	b) Frequency	c) Wavelength	d) Time-period		
267			,	s how the displacement y at		
,			pelled points shows a displa			
			Jenea pomo onowo a alopia	ogaar to that at the		
	position $x = \frac{\pi}{2k}$ at time $t =$	- 0				

b) Strain is maximum at antinodes

279. In stationary wave

GPLUS EDUCATION

a) Strain is maximum at nodes

c) Strain is minimun			zero at all the points	
_	velocity and particle veloc	-		
a) 90°	b) 60°	c) 0°	d) 120°	
-	e between the two particles			
a) 0°	b) 90°	c) 180°	d) 360°	
282. A sine wave has an a	mplitude A and a waveleng	χ th λ .Let $ u$ be the wave	velocity, and \boldsymbol{V} be maximum velocity	īу
of a particle in the m	edium			
a) V cannot be equa	to v	b) $V - v$, if $A = \lambda$	$1/2\pi$	
c) $V - v$, if $A = 2\pi\lambda$		d) $V - v$, if $\lambda = A$	I/π	
283. In a sinusoidal wave	, the time required for a par	rticular point to move	from maximum displacement to zer	o
displacement is 0.17	0 second. The frequency of	the wave is		
a) 1.47 <i>Hz</i>	b) 0.36 <i>Hz</i>	c) 0.73 <i>Hz</i>	d) 2.94 <i>Hz</i>	
284. Two sirens situated	one kilometer apart are pro	oducing sound of frequ	ency 330 <i>Hz</i> . An observer starts	
moving from one sir	en to the other with a speed	d of 2 m/s . If the speed	of sound be $330 m/s$, what will be	
the beat frequency h	eard by the observer			
a) 8	b) 4	c) 6	d) 1	
285. Three waves of equa	l frequency having amplitu	des $10 \mu m$, $4 \mu m$ and 7	μm arrive at a given point with	
successive phase dif	ference of $\pi/2$. The amplitu	de of the resulting wa	ve in μm is given by	
a) 7	b) 6	c) 5	d) 4	
_	-	•	hand velocity of sound in air be v, th	ıe
	ash of sound is heard is	•	•	
	_	72h	2b b	
a) $\left \frac{211}{} + \frac{11}{} \right $	b) $\sqrt{\frac{2h}{g} - \frac{h}{v}}$	c) $\frac{2\pi}{}$	d) $\sqrt{\frac{2h}{g}} \times \frac{h}{v}$	
\sqrt{g} v	\sqrt{g} v	√ g	√ g v	
287. A 1 cm long string vi	brates with fundamental fr	equency of 256 <i>Hz</i> . If t	the length is reduced to $\frac{1}{4}$ cm keeping	g
	d, the new fundamental fre		4	
			d) 1024	
288. A train moves towar	ds a stationary observer wi	th speed34 ms^{-1} . The	d) 1024 train sounds a whistle and its	
			ed to $17 ms^{-1}$, the frequency	
	e speed of sound is 340 ms			
a) 2	b) 1/2	c) 18/19	d) 19/18	
		= -	from maximum displacement to zer	റ
	s. the frequency of the wav	•	nom maximum displacement to zer	
a) 0.42 Hz	b) 2.75 Hz	c) 1.79 Hz	d) 0.56 Hz	
	•	•	e of frequency 200 s^{-1} . The second	
=			quency $420 s^{-1}$. n is equal to	
a) $200 \mathrm{s}^{-1}$	b) 205 s ⁻¹	c) 195 s ⁻¹	d) $210 \mathrm{s}^{-1}$	
•	•	,	g a note of frequency 1000 Hz. The	
	•	•	ce is approaching him and after it	
crosses him will be	observed by a stationary of	iserver willie the sourc	te is approaching min and after it	
(Speed of sound $v =$	240 m/s)			
• =	b) 8 : 9	c) 1:1	d) 0 . 10	
a) 9:8	•	•	d) 9:10	
			vave are received. When the	
	towards the radar, the way	relength of the wave		
a) Decreases				
b) Increases				
c) Remains the same				
d) Sometimes increa	ses or decreases			

293.		ed of 4 ms^{-1} emitting a sou	_			
	towards a vertical wall. The frequency of the reflected sound as defected by the bat will be (take velocity of					
	sound in air as $330 ms^{-1}$)					
	a) $88.1 \times 10^3 \text{Hz}$	b) $87.1 \times 10^3 \text{Hz}$	c) $92.1 \times 10^3 \text{Hz}$	d) $89.1 \times 10^3 \text{Hz}$		
294.	If you set up the seventh h	narmonic on a string fixed a	it both ends, how many noo	les and antinodes are set		
	up in it					
	a) 8,7	b) 7,7	c) 8,9	d) 9,8		
295.	A table is revolving on its	axis at 5 revolutions per se	cond. A sound source of fre	equency 1000 Hz is fixed on		
		e axis. The minimum frequ				
	the table will be (speed of			_		
	a) 1000 Hz	b) 1066 Hz	c) 941 Hz	d) 352 Hz		
296.	The path difference between	een two waves				
	-	$d y_2 = a_2 \cos\left(\omega t - \frac{2\pi x}{\lambda} + d\right)$	þ)is			
	a) $\frac{\lambda}{2\pi}(\phi)$	b) $\frac{\lambda}{2\pi} \left(\phi + \frac{\pi}{2} \right)$	c) $\frac{2\pi}{\lambda} \left(\phi - \frac{\pi}{2} \right)$	d) $\frac{2\pi}{\lambda}$ (ϕ)		
	<i>∆1</i> ι	8 Hz. The frequency of a no	π . Δ.	it is		
_,,,	a) 256 Hz	b) 64 Hz	c) 32 Hz	d) 512 Hz		
298	Which one of the followin	,	0, 02 112	a, 51 2 112		
2,01		aves in air are longitudinal				
	, ,	raves can travel in vacuum				
	c) Both light and sound w					
		are longitudinal while the	light waves are transverse			
299	-	cy of a string stretched with		The weight required to		
2,7,1	produce its octave is	cy of a string stretched with	i a weight of 4 kg is 250 Hz	. The weight required to		
	a) 16 kg-wt	b) 12 kg-wt	c) 24 kg-wt	d) 4 kg-wt		
200	•	iency 256 Hz is moving tow	•	, ,		
300.		-	-	_		
		mber of beats s ⁻¹ heard by	an observer standing betw	den the source and the		
	wall is nearly	0	256 × 220			
	a) $\frac{256 \times 330}{325} - \frac{256 \times 330}{325}$	-	b) $256 - \frac{256 \times 330}{325}$			
	$256 \times 330 256 \times 330$)	256×330			
	c) $\frac{256 \times 330}{325} \times \frac{256 \times 330}{335}$	<u>-</u> <u>-</u>	d) $\frac{256 \times 330}{325} - 256$			
				ously, then the time interval		
	between successive maxir	= =	2 1	g,		
			. 1 1	1		
	a) $\frac{1}{n_1 - n_2}$	b) $\frac{1}{n_1} - \frac{1}{n_2}$	c) $\frac{1}{n_1} + \frac{1}{n_2}$	d) $\frac{1}{n_1 + n_2}$		
302.	The equation of transvers	1 2	1 2	1 2		
	$y = 100 \sin \pi (0.04z - 2t)$					
		and t is in seconds. The freq	uuencv of the wave in Hz is			
	a) 1	b) 2	c) 25	d) 100		
303.	=	ticle executing periodic mo	•	-		
0001		ered to be a result of super		(1) 2) 311 (10001) 11113		
	a) Two waves	b) Three waves	c) Four waves	d) Five waves		
304	*	nd waves of equal amplitud	•	5		
507.	-	ne source has a frequency (
	a) 329 or 353 Hz	b) 335 or 347 Hz	c) 338 or 344 Hz	d) 332 or 350 Hz		
30E	-	•	•			
3U3.	_	from one medium to anoth		_		
	a) Frequency	b) Amplitude	c) Wavelength	d) Speed		

a) $\sqrt{v} = \sqrt{v_1} + \sqrt{v_2} + \sqrt{v_3}$ b) $v = v_1 + v_2 + v_3$ c) $\frac{1}{v} = \frac{1}{v_1} + \frac{1}{v_2} + \frac{1}{v_3}$ d) $\frac{1}{\sqrt{v}} = \frac{1}{\sqrt{v_1}} + \frac{1}{\sqrt{v_2}} + \frac{1}{\sqrt{v_3}}$ 307. A source is moving towards a stationary observer, so that the apparent frequency increases by 50%. If velocity of sound is $330ms^{-1}$, then velocity of source is a) $220ms^{-1}$ b) $180ms^{-1}$ c) $150ms^{-1}$ d) $110ms^{-1}$ 308. A whistle of frequency 540 Hz rerates in a horizontal circle of radius 2m at an angular speed of $15rads^{-1}$.
c) $\frac{1}{v} = \frac{1}{v_1} + \frac{1}{v_2} + \frac{1}{v_3}$ d) $\frac{1}{\sqrt{v}} = \frac{1}{\sqrt{v_1}} + \frac{1}{\sqrt{v_2}} + \frac{1}{\sqrt{v_3}}$ 307. A source is moving towards a stationary observer, so that the apparent frequency increases by 50%. If velocity of sound is $330ms^{-1}$, then velocity of source is a) $220ms^{-1}$ b) $180ms^{-1}$ c) $150ms^{-1}$ d) $110ms^{-1}$
307. A source is moving towards a stationary observer, so that the apparent frequency increases by 50%. If velocity of sound is $330ms^{-1}$, then velocity of source is a) $220ms^{-1}$ b) $180ms^{-1}$ c) $150ms^{-1}$ d) $110ms^{-1}$
velocity of sound is $330ms^{-1}$, then velocity of source is a) $220ms^{-1}$ b) $180ms^{-1}$ c) $150ms^{-1}$ d) $110ms^{-1}$
velocity of sound is $330ms^{-1}$, then velocity of source is a) $220ms^{-1}$ b) $180ms^{-1}$ c) $150ms^{-1}$ d) $110ms^{-1}$
a) $220ms^{-1}$ b) $180ms^{-1}$ c) $150ms^{-1}$ d) $110ms^{-1}$
308 A whictle of frequency 540 Hz regates in a horizontal circle of radius 2m at an angular speed of 15 rads ⁻¹
300. A winsile of frequency 340 fiz refates in a norizontal circle of radius 2m at an angular speed of 15 aus
The highest frequency heard by a listener at rest with respect to the center of circle (velocity of sound in $air = 330ms^{-1}$)
a) 590 Hz b) 594 Hz c) 598 Hz d) 602 Hz
309. The ratio of densities of nitrogen and oxygen is 14:16. The temperature at which the speed of sound in
nitrogen will be same at that in oxygen at 55°C is
a) 35°C b) 48°C c) 65°C d) 14°C
310. The wavelength of a wave is 990 cm and that of other is 100 cm. speed of sound is 396 m/s. The number of
beats heard is
a) 4 b) 5 c) 1 d) 8
311. Beats are produced when two progressive waves of frequency 256 Hz ad 260 Hz superpose. Then the
resultant amplitude changes periodically with frequency of
a) 256 Hz b) 260 Hz $\frac{256-260}{2}$ Hz d) 4 Hz
c) 2
312. If <i>T</i> is the reverberation time of an auditorium of volume <i>V</i> then
a) $T \propto \frac{1}{V}$ b) $T \propto \frac{1}{V^2}$ c) $T \propto V^2$ d) $T \propto V$
313. A wave equation is given by $y = 4 \sin \left[\pi \left(\frac{t}{5} - \frac{x}{9} + \frac{1}{6} \right) \right]$ where x is in cm and t is in second. Which of the following is true?
following is true?
a) $\lambda = 18 \text{ cm}$ b) $v = 4ms^{-1}$ c) $a = 0.4 \text{ cm}$ d) $f = 50 \text{ Hz}$
314. At a certain instant a stationary transverse wave is found to have maximum kinetic energy. The
appearance of string at that instant is
a) Sinusoidal shape with amplitude $\frac{a}{3}$ b) Sinusoidal shape with amplitude $\frac{a}{2}$
c) Sinusoidal shape with amplitude a d) Straight line
315. The frequency of a tuning fork <i>A</i> is 2% more than the frequency of a standard tuning fork. The frequency
of the same standard tuning fork. If 6 beats s^{-1} are heard when the two tuning fork A and B are excited,
the frequency of A is
a) 120 Hz b) 122.4 Hz c) 116.4 Hz d) 130 Hz
316. Equation of motion in the same direction are given by
$y_1 = 2a\sin(\omega t - kx)$ and $y_2 = 2a\sin(\omega t - kx - \theta)$
The amplitude of the medium particle will be
a) $2a\cos\theta$ b) $\sqrt{2}a\cos\theta$ c) $4a\cos\theta/2$ d) $\sqrt{2}a\cos\theta/2$
317. A sounding source of frequency 500 Hz moves towards a stationary observer with a velocity 30 ms^{-1} . If
the velocity of sound in air is $330 ms^{-1}$, find frequency heard by the observer.
a) 500 Hz b) 550 Hz c) 355 Hz d) 55.5 Hz
318. A racing car moving towards a cliff sounds its horn. The drivers observe that the sound reflected from the
cliff has a pitch one octave higher than the actual sound of the horn. If v =the velocity of sound, the velocity of the car is
a) $v/\sqrt{2}$ b) $v/2$ c) $v/3$ d) $v/4$

319. The stationary wave $y = 2a \sin kx \cos \omega t$ in a closed organ pipe is the result of the superposition of $y = \sin(x) t$					
$a\sin(\omega t - kx)$ and	$l(x)$ b) $y = a \sin(x) + 1$	(x) $a) x = a \sin(x) + 1$	(kx) d) $y = a\cos(\omega t + kx)$		
	, , ,		equency of B is 512. It is seen that if		
-	then the number of beats in				
a) 502	b) 507	c) 517	d) 522		
•	•	•	be which resonates to a frequency n		
22					
a) $\frac{v}{4n}$	b) $\frac{v}{2n}$	c) $\frac{2\pi}{v}$	d) $\frac{4n}{v}$		
322. Beats are produced b	—···	$>_2$). The duration of tin	ne between two successive		
maximum or minima		2)			
	_	2	, 1		
a) $\frac{1}{v_1 + v_2}$	b) $\frac{2}{v_1 - v_2}$	c) $\frac{v_1 + v_2}{v_1 + v_2}$	$\overline{v_1-v_2}$		
323. A point source emits	sound equally in all directi	ons in a non-absorbing ı	medium. Two points P and Q are at		
distance of 2m and 3	m respectively from the so	urce. The ratio of the int	ensities of the waves at P and Q is		
a) 9:4	b) 2:3	c) 3:2	d) 4:9		
324. The intensity of sour	d gets reduced by 10% on	passing through a slab. T	Γhe reduction in intensity on		
passing through thre	e consecutive slab is				
a) 30%	b) 27.1%	c) 20%	d) 36%		
325. Sounds wave transfe	r				
a) Only energy not m	iomentum	b) Energy			
c) Momentum		d) Both (a) and (b)		
326. A person carrying a	whistle emitting continuous	sly a note of 272 <i>Hz</i> is ru	inning towards a reflecting surface		
with a speed of 18 km	n/hour. The speed of sound	d in air is $345ms^{-1}$. The	number of beats heard by him is		
a) 4	b) 6	c) 8	d) 3		
327. The equation of wave	e is represented by $Y = 10^{-1}$	$-4\sin\left[100t - \frac{x}{10}\right]m$, then	the velocity of wave will be d) zero		
a) 100ms ⁻¹	b) 4ms ⁻¹	c) 1000ms ⁻¹	d) zero		
328. Two whistles A and I	B produce notes of frequen	cies 660 Hz and 596 Hz	respectively. There is a listener at		
the mid-point of the	line joining them. Now the	whistle B and the listene	er start moving with speed $30 m/s$		
	_		s will be heard by the listener		
a) 2	b) 4	c) 6	d) 8		
329. A simple wave motion	on represented by $y = 5$ (sir	$14\pi t + \sqrt{3}\cos 4\pi t$). Its a	ımplitude is		
a) 5	b) 5√ 3	c) $10\sqrt{3}$	d) 10		
330. A sound wave of free	luency v propagating throu	gh air with a velocity c, i	s reflected from a surface which is		
moving away from th	ne source with a constant sp	peed v. the frequency of	the reflected wave, measured by		
the observed at the p	oosition of the source, is				
a) $\frac{v(c-v)}{c+v}$	b) $\frac{v(C+v)}{C-v}$	c) $\frac{v(c+2v)}{c+v}$	d) $\frac{v(c-v)}{c-2v}$		
	C V	0,0	C 20		
	gressive wave, the phase of	f a particle executing SH	M is		
$\frac{\pi}{3}$					
	e particle 15 cm ahead and	at the			
-	s particle 15 cm aneau and	at the			
$\frac{T}{2}$					
Will be, if the wavele	ngth 60 cm				
π	~	c) Zero	d) $\frac{5\pi}{6}$		
a) $\frac{n}{2}$	b) $\frac{2\pi}{3}$	•	a) <u></u>		
		th 0.5 m is equal to the fr	requency of the first overtone of a		
closed pipe of length	l . The value of l_c is (m)				
a) 1.5	b) 0.75	c) 2	d) 1		
GPLUS EDUCATION	WEB: WWW.GPLUSEDUC	CATION.ORG PI	HONE NO: 8583042324 Page 26		

333	A wave is represented by	the equation: $y = a \sin(0.0)$	$\Im(x-2t)$ where a and x ar	e in <i>cm</i> velocity of		
333.	333. A wave is represented by the equation : $y = a \sin(0.01x - 2t)$ where a and x are in cm , velocity of propagation of wave is					
	a) 10 cm/s	b) 50 <i>cm/s</i>	c) 100 <i>cm/s</i>	d) 200 <i>cm/s</i>		
334	In a stationary wave, all pa	•	c) 100 cm/3	a) 200 cm/3		
<i>55</i> II	=	e twice in every period of o	scillation			
		e only once in every period				
	c) Never at rest at the sam		of oscillation			
	d) Never at rest at all	ic time				
335		e is 10N What should he t	he tension in the wire to pr	oduce a note of double the		
555.	frequency	e is fort, what should be t	ne tension in the wire to pr	oddee a note of double the		
	a) 5 <i>N</i>	b) 20 <i>N</i>	c) 40 N	d) 80 <i>N</i>		
336	•	,	g th λ are fixed at a given dis	•		
5501		-	o sources. The number of b	=		
	second is	ong the fine joining the two	o sources. The number of b	eats near a by min per		
			u	2λ		
	a) $2u/\lambda$	b) u/λ	c) $\frac{u}{3\lambda}$	d) $\frac{2\lambda}{u}$		
337.	Ultrasonic waves are thos	e waves				
	a) To which man can hear		b) Man can't hear			
	c) Are of high velocity		d) Of high amplitude			
338.		onary observer, the velocit	y of train being $\frac{1}{20}$ of the ve	locity of sound. A sharn		
			intervals of a second. The	interval between the		
	successive blasts as heard	by the observer is	10	10		
	a) $\frac{1}{20}s$	b) $\frac{1}{20}$ min	c) $\frac{19}{20}$ s	$d)\frac{10}{20}min$		
	20	20	20 e obtained at depths 22.7 ci	20		
5571	resonance will be obtained		c obtained at depths 2217 ci	in and 7012 cmi The anna		
	a) 117.7 cm	h) 92.9 cm	c) 115.5 cm	d) 113.5 cm		
340.	A source and listener are l	ooth moving towards each	c) 115.5 cm other with speed $\frac{v}{10}$, where	n is the speed of sound If		
0 10.						
	= = =	-	the frequency heard by the	= = = = = = = = = = = = = = = = = = =		
241	a) 1.11 <i>f</i>	b) 1.22 <i>f</i>	c) <i>f</i>	d) 1.27 <i>f</i>		
341.		•	ame material are stretched			
			o of their fundamental freq			
242	a) 16:9:4:1	b) 4:3:2:1	c) 1:4:2:16	d) 1:2:3:4		
342.			e same frequency but having			
	_	ensity of each source is I_0 ,	the average of resultant int	ensity <i>I</i> due to all these ten		
	sources will be	1) 1 401		D		
	a) $I = 100I_0$		c) $I = I_0$	$d) I = \sqrt{10}I_0$		
343.	The equation $\vec{\phi}(x,t) = \vec{j}$ s	in $\left(\frac{2\pi}{\lambda}vt\right)\cos\left(\frac{2\pi}{\lambda}x\right)$ repres	sents			
	a) Transverse progressive	, , , , , , ,	b) Longitudinal progressi	ve wave		
	c) Longitudinal stationary		d) Transverse stationary			
344.	The equation of a wave is					
	a) 3 unit	b) 2 unit	c) 50 unit	d) 47 unit		
345.		veen two points separated	by $1m$ in a wire of frequence	by $120 Hz$ is 90° . The wave		
	velocity is	•	•	•		
	a) 180 <i>m/s</i>	b) 240 <i>m/s</i>	c) 480 m/s	d) 720 <i>m/s</i>		
346.	The speed of sound in a ga	•	•	- ,		
			<u> </u>	$\int_{\mathcal{D}}$		
	a) $\left(\frac{p}{a}\right)^2$	b) $\left(\frac{P}{\rho}\right)^{3/2}$	c) $\sqrt{\frac{\rho}{P}}$	d) $\frac{r}{r}$		
	\ρ/	\p/	٧r	$_{1} ho$		

	tape is attached on the pr the frequency of fork 1 is	ork 1 and fork 2) are sound ong of the fork2. When the 200Hz, then what was the	tuning fork are sounded ag original frequency of fork 2	ain, 6 beats/s are heard. If
	a) 200 Hz	b) 202 Hz	c) 196 Hz	d) 204 Hz
	$5\sin 2\pi (75t - 0.25x)$, y_2	by the following equations at $t = 10 \sin 2\pi (150t - 0.50x)$	_	edium $y_1 =$
	The intensity ratio I_1/I_2 of			
	a) 1:2	b) 1:4	c) 1:8	d) 1:16
		waves with frequency f Hz rections each with a speed ers will be	0.2 <i>V</i> relative to the source.	-
	a) 3:2	b) 2:3	c) 1:1	d) 4:10
	Two waves represented behave an amplitude			ed. The resultant wave will
	a) a	b) $\sqrt{2}a$	c) 2a	d) Zero
	sound in air is	f length 20 $\it cm$ resonated w	rith a tuning fork of frequen	cy 250 <i>Hz</i> . The speed of
	a) 300 <i>m/s</i>	b) 200 <i>m/s</i>	c) 150 <i>m/s</i>	d) 75 <i>m/s</i>
	same train recedes away when the observer moves		arent frequency is n ". Then t	the apparent frequency <i>n</i>
	a) $n = \frac{n' + n}{n}$	b) $n = \sqrt{n'n''}$	c) $n = \frac{2n'n''}{n}$	d) $n = \frac{2n'n''}{}$
252	2	.	n' + n''	n'-n''
	the wave velocity is	ed by $y(x,t) = a \sin(kx - t)$		aximum particle velocity to
	a) <i>ωα</i>	b) $\frac{1}{ka}$	c) $\frac{\omega}{k}$	d) ka
	Doppler shift in frequency a) The frequency of the w	y does not depend upon vave produced	b) The velocity of the sourd) Distance from the sour	
	c) The velocity of the obs			
333,	166 Hz, if the length of th	e air column is	c) 1.00 <i>m</i>	vibrating body of frequency
256	a) 2.00 m	b) 1.50 m	,	d) 0.50 m
330.	sound I air is v , the number	sed at one end have length	$Tailu(t + \Delta t)$, Neglect eu co	rrection, if velocity of
			v	v
	a) <i>v/4l</i>	b) $v/2l$	c) $\frac{v}{4l^2}(\Delta l)$	d) $\frac{1}{2l^2}(\Delta l)$
		n a string of linear mass den $\frac{x}{0.50(m)}$. The tension in the		y y =
	= ' ' ' '	· / =		DOFN
250	a) 6.25 <i>N</i>	b) 4.0 <i>N</i>	c) 12.5 <i>N</i>	d) 0.5 <i>N</i>
358.	sound (velocity of sound	in air = 350 m/s)		the surface that reflects the
	a) 1400 m	b) 2800 m	c) 700 m	d) 350 m
	-	in air then the shortest leng	gth of the closed pipe which	resonates to a frequency
	v, is	12	4	2
	a) $\frac{v}{2v}$	b) $\frac{v}{4v}$	c) $\frac{4v}{v}$	d) $\frac{2v}{v}$

360.	in an experiment for determination of velocity of sound by resonance tube method using a tuning fork of $12 \ Hz$, first resonance was observed at $30.7 \ cm$ and second was obtained at $63.2 \ cm$, then maximum assible error in velocity of sound is (consider actual speed of sound in air is $332 \ m/s$)			
	-	•	=	
261	a) 204 <i>cm/sec</i>	b) 110 cm/sec	c) 58 <i>cm/sec</i>	d) 80 <i>cm/sec</i>
361.		_	tionary person. The object requency noted by the pers	
	a) 1440 Hz	b) 240 Hz	c) 1200 Hz	d) 960 Hz
362.	A wave of frequency 500 phase, is	Hz has velocity 360 m/sec	. The distance between two	nearest points 60° out of
	a) 0.6 <i>cm</i>	b) 12 <i>cm</i>	c) 60 <i>cm</i>	d) 120 <i>cm</i>
363	A standing wave is produc			a) 120 om
	a) All particles vibrate in pb) All antinodes vibrate in c) All alternate antinodes	phase phase		
364.			note is $50 Hz$. The note of	which of the following
	frequencies will not be en	•		
	a) 50 <i>Hz</i>	b) 100 <i>Hz</i>	c) 150 <i>Hz</i>	d) None of the above
365.	Two vibrating tuning fork	s produce progressive wav	ves given by $y_1 = 4 \sin 500$	$\pi t \ and \ y_2 = \sin 50\pi t$.
	Number of beats produce	d per minute is		
	a) 360	b) 180	c) 3	d) 60
366.	A racing car moving towar	rds a cliff sounds its horn. '	Γhe driver observes that th	e sound reflected from the
	actual sound of the horn.	If v is velocity of sound, the	velocity of the car is	
	a) $\frac{v}{\sqrt{2}}$	b) $\frac{v}{2}$	c) $\frac{v}{3}$	d) $\frac{v}{4}$
	$\sqrt{2}$	$\frac{1}{2}$	$\frac{c}{3}$	$a_{j}\frac{1}{4}$
367.	367. The superposing waves are represented by the following equations : $y_1 = 5 \sin 2\pi (10t - 0.1x), y_2 = 10 \sin 2\pi (20t - 0.2x)$ Ratio of intensities $\frac{I_{\text{max}}}{I_{\text{min}}}$ will be			
	a) 1	b) 9	c) 4	d) 16
368.	Velocity of sound in air is			
	a) Faster in dry air than ir	n moist air	b) Directly proportional t	o pressure
	c) Directly proportional to	o temperature	d) Independent of pressur	re of air
369.	A boat at anchor is rocked	l by waves whose crests ar	e 100m apart and velocity i	s $25 \mathrm{ms}^{-1}$. The boat
	bounces up once in every	·	1	
	a) 2500 s	b) 75 s	c) 4 s	d) 0.25 s
370.	A wave is given by $y = 3$ s	$\sin 2\pi \left(\frac{t}{0.04} - \frac{x}{0.01}\right)$, where y	is in <i>cm</i> . Frequency of way	-
	acceleration of particle wi			
	a) $100Hz$, $4.7 \times 10^3 cm/s^2$	2	b) $500Hz$, $7.5 \times 10^3 cm/s$	2
	c) $25Hz$, $4.7 \times 10^4 cm/s^2$		d) $25Hz$, $7.4 \times 10^4 cm/s^2$	
371.	The harmonic which are p	oresent in a pipe open at or	ne end are	
	a) Odd harmonics		b) Even harmonics	
	c) Even as well as odd har	rmonics	d) None of these	
372.	Intensity level of sound of	Fintensity I is 30 dB . The ra	atio $\frac{I}{I_0}$ is (Where I_0 is the th	reshold of hearing)
	a) 3000	b) 1000	c) 300	d) 30
373.	•	•	equency v_1 Now one end o	•
			again occurs in nth harmon	

	a) $n = 3, v_2 = \frac{3}{4}v_1$	b) $n = 3, v_2 - \frac{5}{4}v_1$	c) $n = 5, v_2 = \frac{5}{4}v_1$	d) $n = 5, v_2 = \frac{3}{4}v_1$
	Light from two coherent s	ources of the same amplitu	ude A and wavelength λ illuwere incoherent, the inten	ıminates the screen. The
	be			
	a) $4I_0$	b) $2I_0$	c) I ₀	d) $I_0/2$
375.	A progressive wave in a m	edium is represented by tl	he equation $y = 0.1 \sin(10)$	$\pi t - \frac{5}{11}\pi x$) where y and x
		The wavelength and veloci	•	. 11
	a) $\frac{1}{11}$ cm, 31.4 cms ⁻¹	b) 4.4cm, 22 cms ⁻¹	c) 2.2cm, 11 cms ⁻¹	d) $\frac{-}{5}$ cm, 22 cms ⁻¹
376.	medium. The phase differed a) Varies with time	ence between the vibration	b) Varies with distance se	-
277	c) Varies with time as wel		d) Is always zero	miaja
3//.	a) $320 Hz$	etched wire of given length b) $160 Hz$	n is $320~Hz$. The first harmo c) $480~Hz$	onic is d) 640 <i>Hz</i>
378	*	,	,	*
370.			n ends is given by $y = 0.06$	() /
	x are in metres and t in se	_	d frequency of the two sup	erposing waves are
	a) 2 <i>m</i> , 120 <i>Hz</i>	b) $\frac{2}{3}m$, 60 <i>Hz</i>	c) $\frac{3}{2}m$, 120 Hz	d) 3 <i>m</i> , 60 <i>Hz</i>
379.	The magnetic field in the p $B_y = 2 \times 10^{-7} \sin(0.5 \times 1)$		l is given by	
	-	ctric field may be given by		
	a) $E_y = 2 \times 10^{-7} \sin(0.5 \times 10^{-7})$	$\times 10^3 z + 1.5 \times 10^{11} t) V/m$	ι	
b) $E_x = 2 \times 10^{-7} \sin(0.5 \times 10^3 z + 1.5 \times 10^{11} t) V/m$				
	c) $E_y = 60 \sin(0.5 \times 10^3 z)$	$+ 1.5 \times 10^{11} t) V/m$		
	d) $E_x = 60 \sin(0.5 \times 10^3 z)$	$+~1.5\times10^{11}t)V/m$:ATION	
380.	How many times more int	ense is a 60 dB sound than		
	a) 1000	b) 2	c) 100	d) 4
381.	The transverse displacemerepresent a	ent $y(x, t)$ of a wave on a s	tring is given by $y(x,t) = \epsilon$	$e^{-(ax^2+bt^2+2\sqrt{ab}xt)}$ This
	a) Wave moving in x- dire	ction with speed $\frac{b}{b}$	b) Standing wave of frequ	$oncy \sqrt{h}$
	a) wave moving in x- une	$\sqrt{\frac{a}{a}}$	b) Standing wave of frequ	ency vb
	c) Standing wave of frequ	ency $\frac{1}{\sqrt{b}}$	d) Wave moving in +x dir	rection with speed $\sqrt{\frac{a}{b}}$
382.			n emitting their fundamenta	al nodes. If their lengths are
		eir fundamental frequency		
	a) 270, 280	b) 260, 270	c) 260, 250	d) 260, 280
383. The frequency of a sonometer wire is 100 Hz. When the weights producing the tension are con immersed in water, the frequency becomes 80 Hz and on immersing the weights in a certain li				
		. The specific gravity of the		,
	a) 1.42	b) 1.77	c) 1.21	d) 1.82
384.	•	•	s when vibrates with a sour	•
The second of the same pipe produces 10 beats/s with a source of frequency 420 Hz. The frequency of source is				
	a) 195 Hz	b) 205 Hz	c) 190 Hz	d) 210 Hz
385.	•		20t + 5x), where y is displ	•
	following statements is no		, , , , , , , , , , , , , , , , , , ,	

GPLUS EDUCATION

GPLUS EDUCATION	WEB: <u>WWW.GPLUSEDUC</u>	ATION.ORG PHO	ONE NO: 8583042324 Page 31	
a) Intensity of light		b) X-rays radiation o		
398. Decibel is unit of		L) V !! !!		
a) 100,200,300	b) 50,150,250	c) 50,100, 200,300	d) 50,100,150,200	
closed?	••	.		
	has fundamental frequency \widehat{A}	100 Hz. What frequency v	vill be produced if its one end is	
a) Increases	b) Decreases	c) Unchanged	d) Not definite	
-			ound produced by the organ pipe	
a) 680 Hz	b) 640 Hz	c) 700 Hz	d) 720 Hz	
$ \longrightarrow x $				
V 60°				
a A	11 11 11 11 11 11 11 11 11 11 11 11 11	J AMARIA CELE (SMC	U" ") "	
	the apparent frequency hea	•		
-	-		of frequency 660 Hz. If the speed	
a) 330,990,1690 Hz		c) 660,1320,1980 H		
	air in 330ms ⁻¹ , the sound en	-		
	o) 4 nouth of a tube of length 25 c	,	3	
a) 7	b) 4	c) 8	d) 2	
The number of beats		in bibe is now naived and	that of closed pipe is doubled.	
			when they are set into vibrations	
			,	
o) 3 m	while fork completes 36 vib b) $13 m$	c) 23 m	d) 33 <i>m</i>	
			an is 332 m/s, now lat the	
a) Zero	uning fork is 384 per second			
is 3) Zero	b) 1.256 <i>metres</i>	c) 2.512 metres	d) 0.628 metre	
	15 SIN 5x cos 300t, describes	a stationary wave. The w	vavelength of the stationary wave	
a) 80 vibrations/sec				
	sound. What will be the free			
			ary observer with a speed equal	
,	,	,	d) $4.2 \times 10^4 \text{ms}^{-1}$	
a) $42 \times 10^3 \text{ms}^{-1}$	e in wavelength of light com	ing from a star is 0.014% c) $3.5 \times 10^3 \text{ms}^{-1}$		
a) 05 Hz	b) 1.0 Hz	c) 1.5 Hz	d) 2.0 Hz	
			7) 2 0 11	
	$\cos\left(4\pi t + \frac{\pi}{4}\right)$. The frequency			
4	12		notion is related to time t (in	
a) $\frac{v_s}{2}$	b) $\frac{v_s}{12}$	c) $12v_s$	d) $\frac{3}{2}v_s^2$	
will be	12		2	
-	d is v_s in air. If the density of	air is increased to 4 time	es, then the new velocity of sound	
	d with intensity ratio 81 : 1 b	_	_	
· · · · · · · · · · · · · · · · · · ·	d with intensity ratio $81:1$ k	-	_	
	d with intensity ratio 25 : 16		_	
	d with intensity ratio 25 : 16			
	observer located near these			
			es given by $y_1 = 4 \sin 600\pi t$ and	
,	locity of the particles is 500 i	units		
c) The velocity of the wave is 4 units				
b) The wave is propa	agating in positive x -directio	n		

a) The amplitude of the wave is 25 units

	c) Sound loudness	d) Energy of radiation			
399	99. A glass tube 1.5 m long and open at both ends, is immersed vertically in a water tank completely. A tuning				
	fork of 660 Hz is vibrated and kept at the upper end		_		
	water. The total number of resonances heard before	the tube comes out of water	er, taking velocity of sound		
	air 330 <i>m/sec</i> is a) 12 b) 6	c) 8	d) 4		
400	The minimum intensity of sound is zero at a point du		•		
100.	a) Two sources are vibrating in opposite phase	no to the sources of mounty	oquai ii oquonoios, iiion		
	b) The amplitude of two sources are equal				
	c) At the point of observation, the amplitudes of two	S.H.M. produced by two so	ources are equal and both		
	the S.H.M. are along the same straight line				
	d) Both the sources are in the same phase				
401	If vibrations of a string are to be increased by a facto		-		
402	a) Halfb) TwiceA student determines the velocity of sound with the	c) Four times	d) Eight times If the observed length for		
402	fundamental frequency is 24.7 <i>m</i> , the length for third		. If the observed length for		
	a) 74.1 <i>cm</i> b) 72.7 <i>cm</i>	c) 75.4 <i>cm</i>	d) 73.1 <i>cm</i>		
403	If sound wave travel from air to water, which of the		•		
	a) Velocity b) Wavelength	c) Frequency	d) Intensity		
404	Two waves				
	$y_1 = A_1 \sin(\omega t - \beta_1), y_2 = A_2 \sin(\omega t - \beta_2)$				
	Superimpose to form a resultant wave whose amplit		the second secon		
	a) $\sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\beta_1 - \beta_2)}$	b) $\sqrt{A_1^2 + A_2^2 + 2A_1A_2} \sin($	$(\beta_1 - \beta_2)$		
	c) $A_1 + A_2$	d) $ A_1 + A_2 $			
405	Two waves are given by $y_1 = a \sin(\omega t - kx)$ and y_2	$= a\cos(\omega t - kx)$			
	The phase difference between the two waves is	'A TION	1) /2		
406	a) $\pi/4$ b) π In a progressive wave, the distance between two con	c) $\pi/8$	d) $\pi/2$		
400			2		
	a) $\frac{\lambda}{2}$ b) λ	c) 2 λ	d) $\frac{2}{\lambda}$		
407	If man were standing unsymmetrical between parall	-	_		
	echoes at a intervals of 1 s. If speed of sound in air is				
400	a) 340m b) 510m	c) 170m	d) 680m		
408	Two trains are moving towards each other with spec				
	first train sounds whistle of frequency 600 Hz, the fr second train before the meets is (the speed of sound	= -	ru by a passenger in the		
	a) 600 Hz b) 585 Hz	c) 645 Hz	d) 666 Hz		
409	In Melde's experiment, the string vibrates in 4 loops	•			
	To make the string to vibrates in 6 loops the weight				
	a) 0.0007 kg-wt b) 0.0021 kg-wt	c) 0.036 kg-wt	d) 0.0029 kg-wt		
410	410. The electric field part of an electromagnetic wave in a medium is represented by $E_x=0$;				
	$E_y = 2.5 \frac{N}{C} \cos \left[\left(2\pi \times 10^6 \frac{rad}{m} \right) t - \left(\pi \times 10^{-2} \frac{rad}{s} \right) \right]$	x];			
	$E_2 = 0$. The wave is				
	a) Moving along y direction with frequency $2\pi \times 10^{\circ}$	_			
	b) Moving along x direction with frequency $10^6 Hz$ and wavelength $100 m$				
	c) Moving along x direction with frequency $10^6 Hz$ a	-			
	d) Moving along $-x$ direction with frequency $10^6 Hz$	and wavelength 200 III			

411	-		ne speed of sound in the str	etched string is v. if the	
	•	increased to 1.5x, the speed		1) 0.75	
412	a) 1.22v	b) 0.61v	c) 1.50v	d) 0.75v	
412.			onic mode of the pipe is results: $\frac{1}{100}$	sonantiy excited by a	
		eed of sound in air = $330 r$	•	J) [
112	a) First	b) Second	c) Third	d) Fourth	
413.	loaded with wax, they pro	_	ney produce 4 beats per sec ed again. The frequency of A	4 is 256. The frequency of <i>B</i>	
	will be a) 250	b) 252	c) 260	d) 262	
414		,	$y_1 = A\sin(\omega t - kx), y_2 =$,	
111	amplitude of the medium	particle will be			
	a) $2A\cos\frac{\theta}{2}$	b) $2A\cos\theta$	c) $\sqrt{2}A\cos\frac{\theta}{2}$	d) $\sqrt{2}A\cos\theta$	
415	A stretched string of leng		sustain stationary waves of		
	a) $\lambda = 2l$ n	b) $\lambda = \frac{\iota^2}{n}$	c) $\lambda = \frac{\iota^2}{\iota^2}$	d) $\lambda = \frac{n^2}{2}$	
				21	
416		=	produce 10 beat/sec. The	-	
	a) 255 <i>m/s</i>	b) 250 <i>m/s</i>	c) 350 <i>m/s</i>	d) None of these	
417	-			A tuning fork of frequency n	
		•	es if the piston is moves in o	-	
	-	_	f 9 cm, the intensity of sour	nd becomes minimum, if the	
	speed of sound is 360 m/	s, the value of n is	>		
	Piston				
	Y	~			
	a) 129.6 Hz	b) 500 Hz	c) 1000 Hz	d) 2000 Hz	
418	•			•	
110	18. An open organ pipe is closed suddenly with the result that the second overtone of the closed pipe is found to be higher in frequency by 100 than the first overtone of the original pipe. Then the fundamental				
	frequency of the open pip				
	a) $200s^{-1}$	b) 100s ⁻¹	c) $300 s^{-1}$	d) $250 s^{-1}$	
419			ısly gave 4 beats per sec. If	longer pipe has a length of	
	-	er pipe will be, $(v = 300 m)$			
	a) 185.5 <i>cm</i>	b) 94.9 <i>cm</i>	c) 90 <i>cm</i>	d) 80 <i>cm</i>	
420			source of sound as perceiv		
	= =	-	uency of the source. If the v	elocity of sound in air is	
	$300 \mathrm{ms}^{-1}$, the velocity of				
	a) 12ms ⁻¹	b) 1.5ms ⁻¹	c) 3ms ⁻¹	d) 6ms ⁻¹	
421	Two waves of same frequ	ency and intensity superin	npose with each other in op	posite phases, then after	
	superposition the				
	a) Intensity increases by	4 times	b) Intensity increases by	two times	
	c) Frequency increases b	y 4 times	d) None of these		
422	While measuring the spec	ed of sound by performing	a resonance column experi	ment, a student gets the	
	first resonance condition	at a column length of 18 cm	n during winter. Repeating	the same experiment	
	during summer, she meas	sures the column length to	be x cm for the second reso	onance. Then	
	a) 18 >x	b) X >54	c) $54 > x > 36$	d) $36 > x > 18$	
423	A tuning fork A produces	4 beats/sec with another	tuning fork B of frequency	320~Hz. On filing the fork A ,	
	4 beats/sec are again he	ard. The frequency of fork	A, after filing is		
	a) 324 <i>Hz</i>	b) 320 <i>Hz</i>	c) 316 <i>Hz</i>	d) 314 <i>Hz</i>	

	424. If L_1 and L_2 are the lengths of the first and second resonating air columns in a resonance tube, then the wavelength of the note produced is				
	a) $2(L_2 + L_1)$	b) $2(L_2 - L_1)$	c) $2\left(L_2 - \frac{L_1}{2}\right)$	d) $2\left(L_2 + \frac{L_1}{2}\right)$	
		.1 sin $[100 \pi t - kx]$ and wa			
	a) 1m ⁻¹	b) 2m ⁻¹	c) πm^{-1}	d) $2\pi \text{ m}^{-1}$	
	Fundamental frequency o new fundamental frequen	If sonometer wire is $n.$ If the acy is	e length, tension and diame	eter of wire are tripled, the	
	a) $\frac{n}{\sqrt{3}}$	b) $\frac{n}{3}$	c) $n\sqrt{3}$	$d)\frac{n}{3\sqrt{3}}$	
	The function $\sin^2(\omega t)$ rep				
	· ·	ple harmonic motion with	- '		
		ple harmonic motion with	a period π/ω		
	c) A simple harmonic mo	• •			
	d) A simple harmonic mo	= -			
	_	ged in increasing order of f		-	
		. The highest frequency is t	wice that of the lowest. Pos	ssible highest and lowest	
	frequencies are				
	a) 80 and 40	b) 100 and 50	c) 44 and 32	d) 72 and 36	
	and wavelength 60 m be v	written as	-	de 0.2m, velocity 360 ms^{-1}	
	a) $y = 0.2 \sin \pi \left[6t + \frac{x}{60} \right]$		b) $y = 0.2 \sin \pi \left[6t - \frac{x}{60} \right]$		
	c) $y = 0.2 \sin 2\pi \left[6t - \frac{x}{60} \right]$	141.	b) $y = 0.2 \sin \pi \left[6t - \frac{x}{60} \right]$ d) $y = 0.2 \sin 2\pi \left[6t + \frac{x}{60} \right]$		
430.	The diagram below shows	- s an instantaneous positior			
	along it from left to right	ă.			
	1	IS EDUC	ATION		
		g correctly shows the direc	ction of the velocity of the p	ooints 1, 2 and 3 on the	
	string				
	1 2 3				
	$a) \rightarrow \rightarrow \rightarrow$	$b) \rightarrow \leftarrow \rightarrow$	c) ↓ ↓ ↓	d) ↓ ↑ ↓	
	=	y two sound sources of san		equal frequencies. The	
		nts will be that of one sou			
	a) Same	b) Double	c) Four times	d) Eight times	
	-) waves are passing throug	h a point, in the medium in	
	2 minutes, then its wavele		-		
	a) 13.8 m	b) 25.3 m	c) 41.5 m	d) 57.2 <i>m</i>	
		of a note, when a listener m	•	•	
	-	the moves away from the sa		speed, the apparent	
		te is $160 Hz$. The velocity o		D 0.40	
	a) 360	b) 330	c) 320	d) 340	
	Tube A has both ends ope fundamental frequencies	n while tube B has one end are in the ratio	l closed. Otherwise they are	e identical. Their	
	a) 4:1	b) 2:1	c) 1:4	d) 1:4	
	=		•	ely are enclosed in separate	
		ne temperature. The ratio o			

b)
$$\sqrt{\frac{m_2}{m_1}}$$

c)
$$\frac{m_1}{m_2}$$

$$\mathrm{d})\,\frac{m_2}{m_1}$$

436. Two pulses travel in mutually opposite directions in a string with a speed of 2.5 cm/s as shown in the figure. Initially the pulses are 10cm apart. What will be the state of the string after two seconds

437. In stationary waves all particles between two nodes pass through the mean position

- a) At different times with different velocities
- b) At different times with the same velocity
- c) At the same time with equal velocity
- d) At the same time with different velocities

438. Two string A and B are slightly out tune and produces beats of frequency 5Hz. Increasing the tension in B reduces the beat frequency to 3Hz. If the frequency of string A is 450 Hz, calculate the frequency of string

439. Two wires are producing fundamental notes of the same frequency. Change in which of the following factors of one wire will not produce beats between them

a) Amplitude of the vibrations

b) Material of the wire

c) Stretching force

d) Diameter of the wires

440. Two vibrating strings of the same material but length L and 2L have radii 2r and r respectively. They are stretched under the same tension. Both the strings vibrate in their fundamental modes, the one of the length L with frequency v_1 and the other with frequency v_2 , the ratio v/v_2 is

441. Vibrating tuning fork of frequency n is placed near the open end of a long cylindrical tube. The tube has a side opening and is fitted with a movable reflecting piston. As the piston is moved through 8.75 cm, the intensity of sound changes from a maximum to minimum. If the speed of sound is 350 m/s, then n is

- a) 500 Hz
- b) 1000 Hz
- c) 2000 Hz
- d) 4000 Hz

442. The phase difference between two points separated by 0.8 m in a wave of frequency is 120 Hz is $\pi/2$. The velocity of wave is

- a) $720 \, m/s$
- b) $384 \, m/s$
- c) $250 \, m/s$
- d) 1 m/s

443. An organ pipe, open from both end produces 5 beats per second when vibrated with a source of frequency $200 \, Hz$. The second harmonic of the same pipes produces 10 beats per second with a source of frequency 420 Hz. The frequency of source is

- a) 195 Hz
- b) 205 Hz
- c) 190 Hz
- d) 210 Hz

444. Two passenger trains moving with a speed of $108 \, km/hour$ cross each other. One of them blows a whistle whose frequency is 750 Hz. If sound speed is 330 m/s, then passengers sitting in the other train, after trains cross each other will hear sound whose frequency will be

	a) 900 <i>Hz</i>	b) 625 <i>Hz</i>	c) 750 <i>Hz</i>	d) 800 <i>Hz</i>		
445.		=		he track, frequency of horn		
	-	cy heard by the pedestrian				
4.4.6	a) 1077 Hz	b) 1167 Hz	c) 985 Hz	d) 954 Hz		
446.		ecreased by 19%. The perc b) 10%	entage decrease in frequen c) 0.19%	cy will be d) None of these		
447	a) 19% n waves are produced on	•	•	•		
	n waves are produced on a string in one second. When the radius of the string is doubled and the tension is maintained the same, the number of waves produced in one second for the same harmonic will be					
	a) $\frac{n}{2}$	b) $\frac{n}{3}$	c) 2n	d) $\frac{n}{\sqrt{2}}$		
448.	A plane progressive wave	is given by $y=2\cos 6.284$ ((30t-x) what is period of the			
	330			d) $\frac{6.284}{330}$ s		
449.	•		he shape of pulse at t=0 and			
450	a) Are different	b) Are same	c) May not be same	d) None of these		
450.			cy f_1 . When the pipe is kep	t with $\frac{3}{4}th$ of its length in		
	water, it produced a note	of frequency f_2 . The ratio $rac{f}{f}$	$\frac{1}{2}$ is			
	a) $\frac{3}{4}$	b) $\frac{4}{2}$	c) $\frac{1}{2}$	d) 2		
	4	3	2	u) -		
	Equation of a progressive					
	$y = 0.2\cos\pi \left(0.04t + .02\right)$	$x-\frac{1}{6}$				
	The distance is expressed particles having the phase		What will be the minimum	distance between two		
	a) 4 <i>cm</i>	b) 8 cm	c) 25 cm	d) 12.5 <i>cm</i>		
452.	The equation of a wave is given by $y=10\sin\left(\frac{2\pi}{45}t+a\right)$. If the displacement is 5 cm at t=0, then the total					
	phase at t=7.5s is	$\frac{\pi}{b}$ LUS EDU('ATION	_		
	a) π	b) $\frac{\pi}{6}$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{2}$		
453.	Unlike a laboratory sonon	neter, a stringed instrumer	nt is seldom plucked in the i	middle. Supposing a sitar		
		_	end. The most prominent ha			
	a) Eighth	b) Fourth	c) Third	d) Second		
454.		,	vards an observer with velo			
	sound is $330\mathrm{ms}^{-1}$. The fre	quency heard by the obser	ver will be			
	a) 545 Hz	b) 580 Hz	c) 558.3 Hz	d) 550 Hz		
455.	_	· -	elling towards right, create	ed by a source vibrating at a		
	frequency n . Consider the	following statements				
	a b c d e					
	I. The speed of the wave is	$s 4n \times ab$				
	II. The medium at a will be	e in the same phase as d af	$ter \frac{4}{3n}s$			
	III. The phase difference b	between b and e is $\frac{3\pi}{2}$				
	Which of these statements	s are correct				
	a) I, II and III	b) II only	c) I and III	d) III only		

-	-	-	the observer is approaching the y of sound in air $(330ms^{-1})$ is
a) $\frac{1}{3}$	b) $\frac{3}{10}$	c) $\frac{2}{5}$	d) $\frac{2}{3}$
457. A string of density 7.5	gm cm ⁻³ and area of cros	ss-section 0.2mm ² is stret	ched under a tension of 20N.
	he mid-point, the speed o		
a) 116ms ⁻¹	b) 40 ms ⁻¹	c) 200 ms^{-1}	d) 80 ms^{-1}
458. Which of the following	*	•	,
a) Lion	b) Mosquito	c) Man	d) Woman
	•	•	of sound in the gas becomes $\sqrt{3}$
-	ty in it. The initial temper	•	4
a) -73°C	b) 27°C	c) 127°C	d) 327°C
	•	•	air, under identical conditions of
pressure and tempera			,
a) $V_m < V_d$		c) $V_m V_d = 1$	d) $V_m = V_d$
			nary observer. The observer
			ent frequency of the source when
		• •	ne sound in medium is 350 m ⁻¹ .
a) 750 Hz	b) 857 Hz	c) 1143 Hz	d) 1333 Hz
,	-	•	and minimum intensity will be
a) 16:18	b) 18:16	c) 49:1	d) 1:49
			elling wave propagating along $+X$
direction with velocity		mi(10t x)mile is a trave	ming wave propagating along 121
a) 40ms^{-1}	b) 20ms ⁻¹	c) 5ms ⁻¹	d) None of these
464. The length of an elastic	The second secon		-
_	5 N. the length of the stri	_	
a) a-b	-	-	d) 4a-3b
aj a - b	b) 5b-4a	c) 2b $-\frac{1}{4}$ a	u) 4a-3b
465. Two tuning forks when	n sounded together produ	iced 4 <i>beats/sec</i> . The free	quency of one fork is 256. The
_	-	•	d with wax. The frequency of the
other fork is			
a) 504	b) 520	c) 260	d) 252
466. The nature of sound w	•	,	,
a) Transverse	b) Longitudinal	c) Stationary	d) Electromagnetic
-		•	n/s, then the frequency for the
second note is	0 11	J	1 3
a) 220 <i>Hz</i>	b) 165 <i>Hz</i>	c) 110 Hz	d) 55 <i>Hz</i>
	,		nen sounded with a sonometer
	= =	= -	beat frequency decreases. If the
	er wire is $0.5 m$, the speed		
a) $260 \ ms^{-1}$	b) 250 ms ⁻¹	c) $240 ms^{-1}$	d) $500 ms^{-1}$
•		•	of the air filled pipe is 0.01s. the
fundamental frequenc		ve to readir the croped and	or the an imea pipe is closed the
-			
a) 25	•	c) 20	d) 15
a) 25 470. A whistle of frequency	b) 12.5	c) 20 a string of length 1.2m, re	d) 15 solves at 400 rev/min. A listener
470. A whistle of frequency	b) 12.5 500 Hz, tie to the end of a	a string of length 1.2m, re	solves at 400 rev/min. A listener
470. A whistle of frequency standing some distance	b) 12.5 500 Hz, tie to the end of a	a string of length 1.2m, re	
470. A whistle of frequency	b) 12.5 500 Hz, tie to the end of a	a string of length 1.2m, re	solves at 400 rev/min. A listener

	a) 4 unit	b) 2 unit	c) Zero	d) 6 unit
472.	A glass tube of length 1.0 i	m is completely filled with	water. A vibrating tuning fo	ork of frequency 500 Hz is
			d out slowly at the bottom o	of tube. If velocity of sound
	in air is 330 ms^{-1} , then th	e total number of resonand	ce that occur will be	
	a) 2	b) 3	c) 1	d) 5
473.	The minimum audible wa	velength at room temperat	ture is about	
	a) 0.2 Å	b) 5 Å	c) 5 cm to 2 metre	d) 20 mm
474.	Two identical sound A an	d \emph{B} reach a point in the sar	ne phase. The resultant sou	and is $\it C.$ The loudness of $\it C$
	is <i>n</i> dB higher the loudnes	s of A.		
	a) 2	b) 3	c) 4	d) 6
475.	If the tension of sonomete	r's wire increases four tim	es then the fundamental fro	equency of the wire will
	increase by			
	a) 2 times	b) 4 times	c) 1/2 times	d) None of the above
476.	-	_	wall. A man walking from	
	=		tensity. If the speed of soun	•
	· · · · · · · · · · · · · · · · · · ·		sition of minimum intensit	
	a) 1/2	b) 1	c) 3/2	d) 2
477.	Which of the following eq			
	a) y=A cos ax sin bt	2)) 11011100	0)) 11000 (4.11, 50)	• • • • • • • • • • • • • • • • • • • •
478.	_		. If a node is formed at 3m	from the surface, then at
		rface another node will be		
	a) 1 <i>m</i>	b) 2 <i>m</i>	c) 3 <i>m</i>	d) 4 <i>m</i>
479.	The wavelength of ultraso	The second secon		2
	a) $5 \times 10^{-1} cm$	b) $5 \times 10^{-3} cm$	•	d) $5 \times 10^3 cm$
480.	=		<i>metres</i> from its speaker is	$1 \times 10^{-2} \mu W/m^2$. The
	intensity at a distance of 1		4 2	
			c) $4 \times 10^{-4} \mu W/m^2$	
481.			quencies of 500 <i>Hz</i> . These h	•
			that the two wires produc	•
	a) 1%	b) 2%	c) 3%	d) 4%
482.	·	_	ince column sends an acous	=
	- · · · ·		ssure is $ ho_A$, then the ratio of	maximum and minimum
	pressure at the closed end	of the tube will be		/ 1)
	$(\rho_A + \rho_0)$	$(\rho_A + 2\rho_0)$	ρ_A	$\left(\rho_A + \frac{1}{2}\rho_0\right)$
	a) $\frac{(\rho_A + \rho_0)}{(\rho_A - \rho_0)}$	b) $\frac{(\rho_A + 2\rho_0)}{(\rho_A - 2\rho_0)}$	c) $\frac{\overline{\rho_0}}{\rho_0}$	d) $\frac{\left(\rho_A + \frac{1}{2}\rho_0\right)}{\left(\rho_A - \frac{1}{2}\rho_0\right)}$
102	A course and an observer	annoach aach athar with	same velocity $50 m/s$. If the	(2. 0)
403.	$435sec^{-1}$, then the real fr		same velocity 50 m/s. If the	e apparent frequency is
	a) $320 s^{-1}$	• •	c) 390sec ⁻¹	d) 420sec ⁻¹
101	,	b) 360 <i>sec</i> ⁻¹	•	•
404.			observer at a speed of 33m	is The frequency heard
	•	relocity of sound in air=33 b) 429	c) 517	4)
405	a) 409	•	,	d) 500
405.		-	a velocity 1/4 th of the vel	ocity of Sound. Then the
		uency to actual frequency o		d) 3·3
106	a) 4:5	b) 5:4	c) 2:3 cm. At what length of pipe	d) 3:2
400.	occur	: 1 resonance occurs at 50	o cm. At what length of pipe	, the 2 th resultance will
	a) 150 <i>cm</i>	b) 50 <i>cm</i>	c) 100 <i>cm</i>	d) 200 <i>cm</i>
	αן 130 τιίι	ບງວບ ເກເ	cj 100 ciil	uj 400 ciii

487.	Two closed organ pipe A	and pipe B have the same l	ength. A is wider than B. th	ey resonate in the
	fundamental mode at fre	quencies v_A and v_B respecti	vely, then	
	a) $v_A = v_B$			
	b) $v_A > v_B$			
	c) $v_A < v_B$			
		nding on the ratio of their d		
		o be generated in a string o	=	n two rigid supports. The
		as to be plucked and touche		21
	a) Plucked at $\frac{l}{4}$ and touch	$\frac{\iota}{2}$	b) Plucked at $\frac{l}{4}$ and touch	$at\frac{3t}{4}$
	c) Plucked at $\frac{l}{2}$ and touch	ned at $\frac{l}{4}$	d) Plucked at $\frac{l}{2}$ and touch	ed at $\frac{3l}{4}$
	-	osed at one end, give 5 beat	-	*
		0:51, their fundamental fre		
	a) 250,255	b) 255,260	c) 260,265	d) 265,270
490.	A cylindrical tube, open a	at both ends, has a fundame	ntal frequency f_0 in air. Th	e tube Is dipped vertically
	into water such that half	of its length is inside water	. The fundamental frequen	cy of the air column now is
	a) $3f_0/4$	b) f_0	c) $f_0/2$	d) $2f_0$
491.	Two increase the frequen	ncy from 100 Hz to 400 Hz	the tension in the string ha	s to be changed by
	a) 4 times	b) 16 times	c) 20 times	d) None of these
	_	f length $51.6~cm$ and $49.1~cm$		-
		rings is same and equal to 1	$\log g/m$. When both the strin	g vibrate simultaneously
	the number of beats is			
	a) 5	b) 7	c) 8	d) 3
		city of a sound source movi		server so that apparent
	frequency is double the a	nctual frequency (Velocity o		17
	a) <i>v</i>	b) 2 <i>v</i>	c) $\frac{v}{2}$	d) $\frac{v}{4}$
494.	The ratio of intensities be	etween two coherent sound	l sources is 4 : 1. The differ	rence of loudness in decibels
	(dB) between maximum	and minimum intensities, o	on their interference in spa	ce is
	a) 20 log2	b) 10 log2	c) 20 log3	d) 10 log3
495.	The displacement y of a p	particle is given by $y = 4 \cos \theta$	$\sin^{-4}\left(\frac{t}{2}\right)\sin(1000t)$. This exp	pression may be considered
		rposition of how many simp	,-,	
	a) 2	b) 3	c) 4	d) 5
	•	ls oscillates in 5 segments, l		
	the frequency?	· ·		
	a) 5 Hz	b) 15 Hz	c) 10 Hz	d) 2 Hz
497.	A wave is represented by	the equation		
	$y = 0.5\sin(10t - x)m.$ It	t is a travelling wave propaş	gating along the $+x$ direction	on with velocity
	a) 10 <i>m/s</i>	b) 20 <i>m/s</i>	c) 5 <i>m/s</i>	d) None of these
498.	A tuning fork of frequence	cy 512 Hz is used to produc	e vibrations in a sonometer	wire of natural frequency
	256 Hz. The wire will vib			
	a) One segment	b) Two segments	c) Four segments	d) Three segments
499.			-	rection perpendicular to the
		bserver and the vehicle. Th		ound to have a frequency
		ocity in air is $300 \mathrm{ms}^{-1}$, then		1) 0.4
500	a) $n_1 = 10n$	$b) n_1 = 0$	c) $n_1 = 0.1n$	$d) n_1 = -0.1n$
		oth sides open generates a	= -	e cylinder vertically
	a) V	half its length the frequency b) 2v	c) v/2	d) v/4
	u, v	∪ 1 	C1 V/ 4	M (V / 1

501. A sound source emits sound waves in a uniform medium. If energy density is E and maximum speed of the particles of the medium is v_{max} . The plot between E and v_{max} is best represented by

- 502. Two sinusoidal waves with same wavelengths and amplitudes travel in opposite directions along a string with a speed $10 ms^{-1}$. If the minimum time interval between two instants when the string is flat is 0.5s, the wavelength of the waves is
 - a) 25 m
- b) 20 m

- 503. A plane progressive wave is represented by the equation $y = 0.1 \sin \left(200\pi t \frac{20\pi x}{17}\right)$ where y is displacement in m, t in second and x is distance from a fixed origin in meter. The frequency, wavelength and speed of the wave respectively are
 - a) 100 Hz, 1.7 m, 170 m/s

b) 150 Hz, 2.4 m, 200 m/s

c) 80 Hz, 1.1 m, 90 m/s

- d) 120 Hz, 1.25 m, 207 m/s
- 504. Two tuning fork P and Q when set vibrating give 4 beats/s. if a prong of the fork P is filed the beats are reduced to $2s^{-1}$. What is frequency of P, if that of Q is 250 Hz?
 - a) 246 Hz
- b) 250 Hz
- c) 254 Hz
- d) 252 Hz
- 505. A tuning fork of known frequency 256 Hz makes 5 beats/s with the vibrating string of a piano. The beat frequency decreases to 2 beats/s when the tension in the piano string is slightly increased. The frequency of the piano string before increasing the tension was
 - a) (256+2)Hz
- b) (256-2)Hz
- c) (256-5)Hz
- d) (256+5)Hz

506. Two waves are represent by

$$y_1 = A\sin(kx - \omega t)$$

 $y_2 = A \cos(kx - \omega t)$. The amplitude of resultant wave is a) 4A b) 2A c) $\sqrt{2}A$

d) A

- 507. Out of following incorrect statement is
 - a) In meld's experiment p^2T remain constant. (p=loop, T=Tension)
 - b) In Kundt's experiment distance between two heaps of powder is $\lambda/2$
 - c) Quink's tube experiment is related with beats.
 - d) Echo phenomena are related with reflection of sound.
- 508. If the temperature of the atmosphere is increased, the following character of the sound wave is effected
 - a) Amplitude
- b) Frequency
- c) Velocity
- d) Wavelength
- 509. An observer standing near the sea shore observes 54 waves per minute. If the wavelength of the water wave is 10m then the velocity of water wave is
 - a) $540 \, ms^{-1}$
- b) $5.4 \, ms^{-1}$
- c) $0.184 \, ms^{-1}$
- d) $9 ms^{-1}$
- 510. Source and observer, both start moving simultaneously from origin, one along X-axis and the other along Y-axis with speed of source equal to twice the speed of observer. The graph between the apparent frequency (n') observed by observer and time t in figure would be

- 511. Two uniform wires are vibrating simultaneously in their fundamental notes. The tension , lengths diameters and the densities of the two wires are in the ratio 8:1, 36:35, 4:1,and 1:2 respectively. If the note of the higher pitch has a frequency 360 Hz, the number of beats produced per second is

b) 15

c) 10

- 512. Fundamental frequency of a sonometer wire is n. if the length and diameter of the wire are doubled keeping the tension same, then the new fundamental frequency is
 - a) $\frac{2n}{\sqrt{2}}$

- d) $\frac{n}{4}$
- 513. Two sound waves travel in the same direction in a medium. The amplitude of each wave is A and the phase difference between the two waves is 120°. The resultant amplitude will
 - a) $\sqrt{2}A$

d)A

- 514. Doppler effect is independent of
 - a) Distance between source and listener
 - c) Velocity of listener

- b) Velocity of source
- d) None of the above
- 515. The number of beats produced per second by two vibrations: $x_1 = x_0 \sin 646 \pi t$ and $x_2 = x_0 \sin 652 \pi t$ is

b) 3

- 516. The ratio of the sound in oxygen to that in hydrogen at same temperature and pressure is approximately
 - a) 16:1

b) 1:16

c) 4:1

- d) 1:4
- 517. An open pipe is suddenly closed at one end with the result that the frequency of third harmonic of the closed pipe is found to be higher at 100 Hz. The fundamental frequency of the open pipe is
 - a) 200 Hz
- b) 480 Hz
- c) 240 Hz
- d) 300 Hz
- 518. A stone is hung in air from a wire, which is stretched over a sonometer. The bridges of the sonometer are 40cm apart when the wire is in unison with a tuning fork of frequency 256. When the stone is completely immersed in water, the length between the bridges is 22 cm for re-establishing unison. The specific gravity of material of stone is

 - a) $\frac{(40^2)}{(40^2) + (22)^2}$ b) $\frac{(40^2)}{(40^2) (22)^2}$ c) $256 \times \frac{22}{40}$
- d) $256 \times \frac{40}{22}$
- 519. 50 tuning forks are arranged in increasing order of their frequencies such that each gives 4 beats/sec with its previous tuning fork. If the frequency of the last fork is octave of the first, then the frequency of the frequency of the first tuning fork is
 - a) 200 Hz
- b) 204 Hz
- c) 196 Hz
- d) None of these

520. A particle moving along a	lpha-axis has acceleration f , at	time t , given by $f = f_0 (1 - \frac{1}{2})^{-1}$	$-\frac{t}{T}$), where f_0 and T are
	t = 0 has zero velocity. In		
the time interval between	t = 0 and the instant whe	n f = 0, the particle's veloc	city (v_x) is
a) f_0T	b) $\frac{1}{2}f_0T^2$	c) $f_0 T^2$	d) $\frac{1}{2}f_0T$
521. Under identical condition	Z		4
a) Monoatomic gas	b) Diatomic gas	c) Triatomic gas	d) Polyatomic gas
522. Two waves are propagat	, ,	,	, ,
	equency. The amplitude of ϵ	• •	•
	e distance <i>AP</i> is greater tha		
point <i>P</i> will be, if the way		J	1
a) 2 <i>a</i>	=	c) $a\sqrt{2}$	d) <i>a</i>
523. The equation of a wave is	given as $y = 0.07 \sin(12\pi x)$	$(x - 3000\pi t)$ where x is in n	netre and t in second, then
the correct statement is			
a) $\lambda = \frac{1}{6m}$, $v = 250 \text{ms}^{-1}$		b) a=0.07m, v = 300ms ⁻¹	-1
6m c) $N=1500$, $v=200$ ms ⁻		d) None of the above	
524. The Speed of sound in a r			27 ⁰ C is
a) 800ms ⁻¹	b) 400.8ms ⁻¹	c) 600ms ⁻¹	d) 1200ms ⁻¹
525. The equation of a plane p	•	,	
wave would be	8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)
	b) $\frac{100}{\pi}$ Hz	a) 100 Hz	4)
a) ${\pi}Hz$	b) ${\pi}HZ$	c) 100 HZ	d) 50 <i>Hz</i>
526. Speed of sound in mercu		is $1450 m/s$. Given the der	nsity of mercury as 13.6 $ imes$
$10^3 kg/m^3$, the bulk mod	The state of the s		
- · · · · · · · · · · · · · · · · · · ·	b) $3.86 \times 10^{10} N/m^3$	-	
527. Two waves of wavelength	The same are a second and the same and the same are a second and the s	7 S.	ns^{-1} are made to interface.
	duced by them per second a		
a) 1	b) 2	c) 4	d) 8
528. The displacement of the i	nterfering sound waves are	$y_1 = 4\sin\omega t \text{ and } y_2 = 3\sin\omega t$	$\sin\left(\omega t + \frac{\pi}{2}\right)$. What is the
amplitude of the resultan	it wave		
a) 5	b) 7	c) 1	d) 0
529. An observer standing at s			
	n. If velocity of sound in air i	is $340 m/s$, then velocity o	f train and actual frequency
of whistle will be			
-	b) $19.5 ms^{-1}$, $205 Hz$	•	
530. The equation of a simple	harmonic wave is given by	$y = 5 \sin \frac{\pi}{2} (100t - x)$ wh	$\operatorname{ere} x$ and y are in meter
and time is in second. Th	e period of the wave in seco	ond will be	
a) 0.04	b) 0.01	c) 1	d) 5
531. The equation of a simple	harmonic wave is given by	$y = 5\sin\frac{\pi}{2}(100t - x), \text{ whe}$	ere x and y are in metre and
time is in second. The per	riod of the wave in second v	will be	
a) 0.04	b) 0.01	c) 1	d) 5
532. Two radio station broado	ast their programmes at th	e same amplitude A and at	slightly different frequency
	where $\omega_2-\omega_1=10^3$ Hz. A d		
	-		etween successive maxima
	nal received by the detector		
a) 10 ³ s	b) 10 ⁻³ s	c) $10^{-4}s$	d) $10^4 s$
533. The tones that are separa	nted by three octaves have a	a frequency ratio of	

string also generate 4 beats/s when excited along with a tuning fork of frequency n. now when the tension of the string is slightly increased the number of beats reduces 2 per second. Assuming the velocity of sound in air to be $340ms^{-1}$, the frequency n of the tuning fork in Hz is

a) 344

b) 336

d) 109.3

549. Which of the following is the longitudinal wave

a) Sound waves

b) Waves on plucked string

c) Water waves

d) Light waves

550. An observer starts moving with uniform acceleration a, towards a stationary sound source of frequency f_0 . As the observer approaches the source, the apparent frequency (f) heard by the observer varies with time (t)is

551. At a certain instant a stationary transverse wave is found to have maximum kinetic energy. The appearance of string at that instant is

- a) Sinusoidal shape with amplitude A/3
- b) Sinusoidal shape with amplitude A/2
- c) Sinusoidal shape with amplitude A
- d) Straight line

552. Mechanical waves on the surface of a liquid are

a) Transverse

b) Longitudinal

c) Torsional

d) Both transverse and longitudinal

553. Transverse waves of same frequency are generated in two steel wires A and B. The diameter of A is twice of B and the tension in A is half that in B. The ratio of velocities of wave in A and B is

- a) $1:3\sqrt{2}$
- b) $1:2\sqrt{2}$
- c) 1:2

554. Two sounding bodies producing progressive waves are given by $y_1 = 4 \sin 400\pi t$ and $y_2 = 3 \sin 404\pi t$ one situated very near to the ear of a person who will hear

- a) 2 beats/s with intensity ratio 4/3 between maxima and minima
- b) 2 beats/s with intensity ratio 49/1 between maxima and minima
- c) 4 beats/s with intensity ratio 4/3 between maxima and minima
- d) 4 beats/s with intensity ratio 4/3 between maxima and minima

555. Two identical stringed instruments have frequency 100 Hz. If tension in one of them is increased by 4% and they are sounded together then the number of beats in one second is

b) 8

c) 4

d) 2

556. If the tension and diameter of a sonometer wire of fundamental frequency n are doubled and density is halved then its fundamental frequency will become

a) $\frac{n}{4}$

c) n

557. Three similar wire of frequency n_1 , n_2 and n_3 are joined to make one wire. Its frequency will be

a) $n = n_1 + n_2 + n_3$

b) $\frac{1}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$

c) $\frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n_1}} + \frac{1}{\sqrt{n_2}} + \frac{1}{\sqrt{n_3}}$

d) $\frac{1}{n^1} = \frac{1}{n_1^2} + \frac{1}{n_2^2} + \frac{1}{n_3^2}$

558. The velocity of sound hydrogen is 1224ms⁻¹. Its velocity in mixture of hydrogen and oxygen containing 4 parts by volume of hydrogen and 1 part oxygen is

- a) 1224ms^{-1}
- b) 612ms^{-1}
- c) 2448ms^{-1}

559. If the speed of a wave doubles as it passes from shallow water deeper water, its wavelength will be

- a) Unchanged
- b) Halved
- c) Doubled
- d) Quadrupled

560.			ositive direction of X –axis	112
	and by $y = \frac{1}{1 + (x - 1)^2}$ at $t = 2$	2s where x and y are in me	eters. The shape of the wav	e disturbance does not
		n. The velocity of the wave		
	a) 0.5ms ⁻¹	b) 2.0ms ⁻¹	c) 1.0ms ⁻¹	d) 4.0ms ⁻¹
561.	A string is stretched betw	een fixed points separated	by 75.0 cm. it is observed t	o have resonant frequency
	of 420 Hz and 315 Hz. The	ere are no other resonant f	requencies between these t	wo. Then, the lowest
	resonant frequency for th	is string is		
	a) 105 Hz	b) 1.05 Hz	c) 1050 Hz	d) 10.5 Hz
562.	-		equency 300 <i>Hz</i> at 27°C. If	-
			ts heard per second will be	
	a) 1	b) 2	c) 3	d) 4
563.			re in the ratio 8:1. The leng	
			naterials are in the ratio 1:2	
	-		vo wires are sounded toget	
 .	a) 8	b) 5	c) 10	d) 6
564.		whistle that is 2 <i>km</i> away. H	Iow much will his watch be	in error. (speed of sound
	in air $330 m/sec$)	h) 2 accorda alour	a) 6 accords foot	d) 6 gaganda alayy
Г/Г	a) 3 seconds fast	b) 3 seconds slow	•	d) 6 seconds slow
505.	harmonic	monic on a string fixed at t	ooth ends, its frequency cor	npared to the seventh
		b) Lower	a) Equal	d) None of the above
E66	a) Higher In the musical octave 'Sa',	b) Lower	c) Equal	d) None of the above
300.		ote 'Sa' is greater than that	of 'Do' 'Co'	
		ote 'Sa' is greater than that		
		e notes 'Sa', 'Re', 'Ga' is the		
		es in the sequence 'Sa', 'Re'		
567		th greater than that of aud		
307.	a) Seismic waves	b) Sonic waves	c) Ultrasonic waves	d) Infrasonic waves
568				· ·
500.			mental frequency of 390 Hz	am air. II -oi the tube is
	·	iter the fundamental frequence		N = 0.77
=	*	b) 130 Hz	•	d) 520 Hz
569.		-	and 9 gcm ⁻¹ are joined to	gether in series. The
	reflection coefficient for the		1	0
	a) $\frac{9}{25}$	b) $\frac{3}{5}$	c) $\frac{1}{16}$	d) $\frac{9}{16}$
570	20	3	ng frequencies. Any two su	10
370.	_	_	he last fork is twice the firs	_
	first fork is	gether, if the frequency of the	ne last fork is twice the mis	t, then the frequency of the
	a) 120	b) 160	c) 180	d) 220
571		•	espectively. When they are	•
571	-		how long will it take to hea	
	a) 1/2 sec	b) 1/4 sec	c) 1/8 sec	d) 1/16 sec
572.			s, that resonates with tunin	• •
- · - ·	350 <i>Hz</i> ? [velocity of soun	-	,	G ₁ ,,,,,,,
	a) 50 <i>cm</i>	b) 100 <i>cm</i>	c) 75 <i>cm</i>	d) 25 <i>cm</i>
573.	•	•	nd velocity of propagation '	
	a) $n = v\lambda$	b) $n = \lambda/v$	c) $n = v/\lambda$	d) $n = 1/v$
		-	•	•

574. Two identical	wires have the same fundamenta	l frequency of 400 <i>Hz</i> when	kept under the same tension. If
	one wire is increased by 2% the r		-
a) 4	b) 2	c) 8	d) 1
	ives can propagate in		,
a) Liquids	b) Solids	c) Gases	d) None of these
	of sound moves on a circle as sho	,	
	e the frequencies heard when the	=	=
.01,.02 and .03 s	o one noqueneres nound or whom one		process, small
٠	C		
- A			
a) $n_1 > n_2 > r$	n_3 b) $n_2 > n_3 > n_1$	c) $n_1 = n_2 > n_3$	d) $n_2 > n_1 > n_3$
577. The loudness a	and pitch of a sound depends on		
a) Intensity an	d velocity	b) Frequency and velo	ocity
c) Intensity an	d frequency	d) Frequency and nur	nber of harmonics
578. Two sound wa	ves of wavelengths $5m$ and $6m$ for	ormed 30 beats in 3 seconds	. The velocity of sound is
a) $300 ms^{-1}$	b) $310 ms^{-1}$	c) $320 ms^{-1}$	d) $330 ms^{-1}$
579. A wave in a str	ring has an amplitude of 2 $\it cm$. The	e wave travels in the +ve di	rection of x axis with a speed of
128 <i>m/sec</i> and	d it is noted that 5 complete wave	es fit in 4 m length of the stri	ng. The equation describing the
wave is	-	_	
a) $y = (0.02)n$	$n\sin(7.85 x + 1005t)$	b) $y = (0.02)m \sin(15)$	5.7 x - 2010t
c) $y = (0.02)n$	$n\sin(15.7 x + 2010t)$	d) $y = (0.02)m \sin(7.$	85 x - 1005t)
	of a transverse wave is given by		
$y = 10\sin\pi(0$			
Where x and y	are in cm and t is in second. Its f	requency is	
a) 10 sec ⁻¹	b) 2 sec^{-1}	c) 1 sec ⁻¹	d) 0.01 sec^{-1}
581. When a sound	wave of frequency 300 Hz passes	s through a medium, the ma	ximum displacement of a
	medium is 0.1 cm. the maximum		
a) 60 cm/s	b) 30 cm/s	c) 60 π cm/s	d) 30π cm/s
582. In brass, the ve	elocity of longitudinal wave is 100	0 times the velocity of the tr	ansverse wave. If $Y = 1 \times$
10^{11}NM^{-2} , the	en stress in the wire is		
a) $1 \times 10^{13} \text{ Nm}$	1^{-2} b) $1 \times 10^9 \text{ Nm}^{-2}$	c) $1 \times 10^{11} \text{Nm}^{-2}$	d) $1 \times 10^7 \text{ Nm}^{-2}$
583. A bus is movin	g with a velocity of 5 ms^{-1} towar	ds a huge wall. The driver s	ounds a horn of frequency 165
	d of sound in air is $335 \mathrm{ms}^{-1}$, the		
bus will be		•	• •
a) 3	b) 4	c) 5	d) 6
	n a moving train hears the whistl		
_	nt frequency as heard by him is si	-	
	nt frequency is larger than $600 H_{\odot}$		
	ncy as heard by him is 600 Hz		
d) None of the	-		
585. Water waves a			
a) Longitudina	ıl	b) Transverse	
- -	ıdinal and transverse	d) Neither longitudina	al nor transverse
-	nd measured in hydrogen and ox		
a) 1 : 4	b) 4:1	c) 2:1	d) 1 : 1
•	requency of the second harmonic		
	d with a tension of 20 N	5 6	J
a) 274.4 <i>Hz</i>	b) 744.2 <i>Hz</i>	c) 44.72 Hz	d) 447.2 <i>Hz</i>

TOO Two warms having single idel warms have differ	and wavelengths and different annulity do They will be
588. Two waves having sinusoidal waveforms have differ having	ent wavelengths and unferent amplitude. They will be
a) Same pitch and different intensity	b) Same quality and different intensity
c) Different quality and different intensity	d) Same quality and different pitch
589. Wave equations of two particles are given by	a) same quanty and uniterent pitch
$y_1 = a \sin(\omega t - kx), y_2 = a \sin(kx + \omega t), \text{ then}$	
a) They are moving in opposite direction	b) Phase between them is 90°
c) Phase between them is 180°	d) Phase between them is 0°
590. Out of the following, incorrect statement is	a) I hase between them is o
a) In Melde's experiment "P ² T" remain constant. (P=	=Loon T=Tension)
b) In Kundt's experiment distance between two hear	- · · · · · · · · · · · · · · · · · · ·
c) Quinckeey's tube experiment related with beats	so or powder to my 2
d) Echo phenomena related with reflection of sound	
591. Which of the following equations represents a wave	
a) $y = A \sin(kx - \omega t)$ b) $x = A \sin(ky - \omega t)$	
592. The harmonics which are present in a pipe, open at o	
a) Odd harmonics	b) Even harmonics
c) Even as well as odd harmonics	d) None of the above
593. An echo repeats two syllables. If the velocity of soun	d is 330ms ⁻¹ , then the distance of the reflecting
surface is	Ç .
a) 66.0 m b) 33.0 m	c) 99.0 m d) 16.5 m
594. If at same temperature and pressure, the densities for	or two diatomic gases are respectively d_1 and d_2 , then
the ratio of velocities of sound in these gases will be	
d_2 d_1	
a) $\sqrt{\frac{d_2}{d_1}}$ b) $\sqrt{\frac{d_1}{d_2}}$	c) $d_1 d_2$ d) $\sqrt{d_1 d_2}$
V 1	
595. A whistle producing sound waves of frequency 9500	⁻¹ . If the person can hear frequency up to a maximum
of 10,000 Hz, the maximum value of v up to which he	
	,
596. In the experiment for the determination of the speed	_
_	rk is 0.1m. When this length is changed to 0.35m, the
same tuning fork resonates with the first overtone.	
a) $0.012 \mathrm{m}$ b) $0.025 \mathrm{m}$ 597. Velocity of sound waves in air is $330 \mathrm{ms}^{-1}$. For a par	c) 0.05 m d) 0.024 m
equivalent to a phase difference of 1.6π . The frequen	-
a) 165 Hz b) 150 Hz	c) 660 Hz d) 330 Hz
598. A bus is moving with a velocity of $5ms^{-1}$ towards a	,
Hz. If the speed of sound in air is 335 ms^{-1} , the num	
the buss will be	bei of beats fleard per second by a passenger finside
a) 3 b) 4	c) 5 d) 6
599. A motor cycle starts from rest and accelerates along	
motor cycle gone when the driver hears the frequen	
cycle was rest? (Speed = 330 ms^{-1})	ey of the siren at 74 % of its value when the motor
a) 49 m b) 98 m	c) 147 m d) 196 m
600. Choose the correct statement	c) 147 m u) 170 m
a) Beats are due to destructive interference	
b) Maximum beat frequency audible to a human being	ng is 20
c) Beats are as a result of Doppler's effect	-0
., = or popper borrood	

d) Beats are due to superposition of two waves of nearly equal frequencies

	a) beats are due to super	position of two waves of in	carry equal frequencies	
601	. The speed of in air is 340	m/s. the speed with which	a source of sound should r	nove towards a stationary
	observer so that the appa	arent frequency becomes tw	vice of the original is	
	a) 640 ms ⁻¹	b) 340 ms ⁻¹	c) 170 ms ⁻¹	d) 85 ms^{-1}
602	. A wave travels in a medi	um according to the equation	on of displacement given by	,
	$y(x,t) = 0.03\sin(2t - 0$		1 0 3	
	• • •	tres and t in seconds. The v	wavelength of the wave is	
	a) 200 m	b) 100 m	c) 20 m	d) 10 m
603	•	•	r reflection from a rock afte	-
000	-	water is $1600 ms^{-1}$, the de		r a lapse of 1 see. If the
	a) 300 m	b) 400 <i>m</i>	c) $500 m$	d) 800 m
604	•	,	,	of the wire is shortened by
004		s is still the same. The frequency	-	of the wife is shortened by
	a) 396	b) 400	c) 404	d) 384
6 N E	•	•	•	,
003			moves with a constant spee	
	•	- ·	quency (n') of the sound hear	•
	protted against time (t) ,	which of the following best	represents the resulting cu	rve
	1	,	,	
	$\binom{n'}{\blacktriangle}$	$\left \begin{array}{c}n\\ \end{array}\right $	$\begin{bmatrix} n \\ k \end{bmatrix}$	$n \mid \overline{}$
	a) [/ \	b) [/ \	c) [d) [
	´			
	→ t	<u> → t</u>	<u>→ t</u>	<u> → t</u>
		41		
606		The state of the s	rst harmonic and another p	
	-	nonic are in resonance with	n a given tuning fork. The ra	tio of the length of P_1 to
	that P_2 is			
	a) 1/3		c) 3/8	d) 8/3
607	. The difference between t	the apparent frequency of a	source of sound as perceiv	ed by the observer during
	its approach and recession	on is 2% of the frequency of	f the source. If the speed of	sound in air is $300 ms^{-1}$,
	the velocity of the source	eis		
	a) 1.5 ms^{-1}	b) 12 ms ⁻¹	c) 6 ms ⁻¹	d) 3 ms^{-1}
608	. In question, the shape of	the wave at time $t = 3s$, if 0	is a fixed end (not free) in	is.
		•	1 cm	/
	•	1 cm		
	a) <i>O</i>	b)1 cm	c)	d)
				Z CIII
609	. When a open pipe I prod	ucing third harmonic, numl	ber of nodes is	
	a) 1	b) 2	c) 3	d) 4
610		ne and displacement for two	•	,
		ϕ_1), $y_2 = 0.03 \sin 2\pi (1.04)$		
			the vibrations of the two pa	rticles will be
	a) 2:1	b) 1:2	c) 4:1	d) 1 : 4
611	-	,	oserver moves away from th	
011			er will be (v=velocity of sou	
			-	2
	a) $\frac{14}{15}v$	b) $\frac{14}{9}v$	c) $\frac{10}{9}v$	d) $\frac{1}{3}v$

612. A sound source is falling under gravity. At some time t=0, the detector lies vertically hallow sources at a depth H as shown in figure. If ν is the velocity of sound and f_0 is frequency recorded after t=2s is

			Gpius Eaucation
To Source			
↑ <i>H</i>			
□ Detector			
	$f_{o}(v+2a)$	$f_{\alpha}(v-2a)$	(v)
a) f_0	b) $\frac{f_0(v+2g)}{v}$	c) $\frac{f_0(v-2g)}{v}$	d) $f_0\left(\frac{v}{v-2g}\right)$
613. A stretched wire of length	110 cm is divided into thr	ee segments whose freque	ncies are in ratio 1 : 2 : 3.
Their lengths must be			
		c) 60 cm; 20 cm; 30 cm	
614. A steel rod 100 cm long is	=	-	y of longitudinal vibrations
a) 5.06 km/s	.53 kHz . What is the speed b) 6.06 km/s	c) 7.06 <i>km/s</i>	d) 8.06 <i>km/s</i>
615. A tuning fork of frequency	•	-	
	cm. the velocity of sound in		
a) 175	b) 350	c) 525	d) 700
616. An organ pipe open at one	_		with another pipe open at
	n third harmonic. The ratio		N 2 2
a) 1:2	b) 4:1	c) 8:3	d) 3:8
617. Two tuning forks <i>P</i> and <i>Q</i>	_	-	e vibrated together and the
		e frequency of P is $341Hz$, t	
1 A/ 2			1 ,
3 2// B			
§ 2			
1			
$0 \xrightarrow{1} \xrightarrow{1} t(s)$	i i		
a) 341 <i>Hz</i>	b) 338 <i>Hz</i>	c) 344 <i>Hz</i>	d) None of the above
618. A source of sound emits 4		formly distributed over a sp	ohere of 10 <i>m</i> radius. What
is the loudness of sound of a) 200 <i>dB</i>	b) $200 \pi dB$	c) 120 <i>dB</i>	d) $120 \pi dB$
619. Doppler phenomena is re		C) 120 ab	u) 120 n ub
a) Pitch (frequency)	b) Loudness	c) Quality	d) Reflection
620. If the equation of transver			
then the wavelength of th	Loic)4 40]´	,
a) 60 <i>cm</i>	b) 40 cm	c) 35 cm	d) 25 <i>cm</i>
621. Two sound waves of sligh	,		-
a) Interference	b) Diffraction	c) Polarization	d) Refraction
622. The amplitude of a wave i	is given by $A = \frac{c}{a+b+c}$. Reso	nance will occur when	
		c) $b = 0, a = c$	d) None of these
2 623. The temperature at which	4		at 27°C is
a) -123°C	b) 927°C	c) 327°C	d) 54°C
624. If fundamental frequency	•		•
a) 100 <i>Hz</i>	b) 50 <i>Hz</i>	c) 250 Hz	d) 150 <i>Hz</i>
625. A stretched string of length			
a) $\lambda = 2ln$	b) $\lambda = 2l/n$	c) $\lambda = l^2/2n$	$d) \lambda = n^2/2l$
626. A resonance pipe is open 1.1 kHz. If the speed of so	at both ends and 30 cm of i und is 330 m/s, which harr	_	ith an external frequency

c) Third

b) Second

a) First

627. In stationary wav	res		
a) Energy is unifo	ormly distributed		
b) Energy is mini	mum at nodes and maximu	m at antinodes	
c) Energy is maxi	mum at nodes and minimu	m at antinodes	
d) Alternating ma	iximum and minimum ener	gy producing at nodes and a	antinodes
628. A tuning fork of fi	requency 480 Hz produces	10 beats s ⁻¹ when sounded	with a vibrating sonometer string.
What must have l	peen the frequency of string	g if slight increase in tension	produces fewer beats s ⁻¹ than
before?			
a) 490 Hz	b) 470 Hz	c) 460 Hz	d) 480 Hz
629. In a stationary wa		-	a certain point is maximum when
a) cos kx is maxir	•		
_			of $20 ms^{-1}$. If the speed of sound is
		nd heard by the girl sitting i	
a) 540 Hz	b) 524 Hz	c) 568 Hz	d) 480 Hz
		=	e. The fork is set vibrating and the
		ions are counted when the p	late falls through 10 cm, the
frequency of the t	•	> = <0 T	N = 6 W
a) 360 Hz	b) 280 Hz	c) 560 <i>Hz</i>	d) 56 <i>Hz</i>
	res of tension 16 N and T , 3		D.M. C.I
a) 49 N	b) 25 N	c) 64 N	d) None of these
=	_		series of echoes at intervals of one
-		s^{-1} , the distance between the	
a) 680 m	b) 1700 m	c) 340 m	d) 1620 m
	e is described by the equation (x)	the state of the s	
`	(t_{γ}^{x}) . The maximum particle	velocity	
	mes the wave velocity, if		
a) $\lambda = \frac{\pi y_0}{4}$	_	c) $\lambda = \pi y_0$	d) $\lambda = 2\pi y_0$
			$A\cos(\omega t - kX), Z_2 = A\cos(\omega t +$
			ill be formed by superposing
a) Z_1 and Z_2	b) Z_1 and Z_4	c) Z_2 and Z_3	d) Z_3 and Z_4
-		-	e previous one. If the frequency of
-		, frequency of the second tu	_
a) 138 Hz	b) 132 Hz	c) 144 Hz	d) 272 Hz
	aves contained in unit leng		
a) Elastic wave		b) Wave number	
c) Wave pulse	$a_{1} = a_{1} = a_{2} = a_{3} = a_{4} = a_{5} = a_{5$	d) Electromagnetic	
	aves $y_1 = A \sin[\kappa(x - ct)]$ adjacent nodes is	and $y_2 = A \sin[\kappa(x + ci)]$ ar	e superimposed on string. The
a) ct/π	b) $ct/2\pi$	c) $\pi/2k$	d) π/k
	, ,		propagate in a gas with velocity
	ect the following number of		propagate in a gas with velocity
a) 1	b) 6	c) 12	d) 0
	•		e between two displacements at a
-	time 10^{-3} s apart will be	omis The phase unierene	e between two displacements at a
a) π rad	b) $\pi/2$ rad	c) π/4 rad	d) 2π rad
,	• •	-	ρ) of a wire, keeping its length,
radius and tensio		((1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

642. Which of the following is different from others

- a) Velocity
- b) Wavelength
- c) Frequency
- d) Amplitude

643. A stationary source is emitted sound at a fixed frequency f_0 , which is reflected by two cars approaching the source. The difference between the is frequencies of sound reflected from the car is 1.2% of f_0 . What is the difference in the speed of the cars (in km per hour) to the nearest integer? The cars are moving at constant speeds much smaller than the speed of sound which is $330ms^{-1}$

- a) 7.128 km/h
- b) 7 km/h
- c) 8.128 km/h
- d) 9 km/h

644. The distance between two consecutive crests in a wave train produced in a string in 5 cm. If 2 complete waves pass through any point per second, the velocity of the wave is

- a) 10 cm/sec
- b) 2.5 *cm/sec*
- c) 5 cm/sec

645. The ratio of the velocity of sound in hydrogen ($\gamma = 7/5$) to that helium $\left(\gamma = \frac{5}{3}\right)$ at the same temperature is

a)
$$\sqrt{\frac{5}{42}}$$

b) $\sqrt{\frac{5}{21}}$

c) $\frac{\sqrt{42}}{5}$

646. Tuning fork F_1 has a frequency of 256 Hz and it is observed to produce 6 beats/second with another tuning fork F_2 . When F_2 is loaded with wax, it still produces 6 beats/second with F_1 . The frequency of F_2 before loading was

- a) 253 Hz
- b) 262 Hz
- c) 250 Hz
- d) 259 Hz

647. A rocket is receding away from earth with velocity = 0.2c. The rocket emit signal or frequency 4×10^7 Hz. The apparent frequency of the signal produced by the rocket observed by the observer on earth will be

- a) $3 \times 10^{6} Hz$
- b) 4×10^{6} Hz
- c) $2.4 \times 10^{7} \text{Hz}$
- d) $5 \times 10^7 \text{Hz}$

648. Two waves of wavelengths 50 cm and 51 cm produced 12 beats per second. The velocity of sound is

- a) $306 \, m/s$
- b) 331 m/s c) 340 m/s
- d) $360 \, m/s$

649. n_1 Is the frequency of the pipe closed at one end and n_2 is the frequency of the pipe open at both ends. If both are joined end to end, find the fundamental frequency of closed pipe so formed

- a) $\frac{n_1 n_2}{n_2 + 2n_1}$
- b) $\frac{n_1 n_2}{2n_2 + n_1}$
- c) $\frac{n_1 + 2n_2}{n_2 n_1}$

650. The equation of a stationary wave along a stretched string is given by $y = 4 \sin \frac{2\pi x}{2} \cos 40\pi t$ where x and yare in cms and t is in sec. The separation between two adjacent nodes is

a) 3 cm

- b) 1.5 cm
- c) 6 cm

d) 4 cm

651. In an experiment, it was found that string vibrates in n loops when a mass M is placed o the pan. What mass should be placed on the pa to make it vibrate in 2n loops, with same frequency. Neglect the mass of the pan.

a) M/4

b) 4M

c) 2M

d) M/2

652. The diagram below shows the propagation of a wave. Which points are in same phase

a) F, G

- b) C and E
- c) B and G
- d) B and F

	wire 100 cm long has a fundament aves on the wire is	al frequency of 330 Hz.	The velocity of propagation of	
a) 330 ms ⁻¹	b) 660 ms ⁻¹	c) 990 ms ⁻¹	d) 115 ms ⁻¹	
•	orm rope changes vertically from th	•		
-	g upwards from the lower end has	-		
_		=	4	
a) $v \propto x$	b) $v \propto \sqrt{x}$	c) $v \propto \frac{1}{x}$	d) $v \propto \frac{1}{\sqrt{x}}$	
655. Two wires of	the same material and radii r and \ddot{z}	2r respectively are veld	ed together end to end. The	
combination	is used as a sonometer wire and ke	ept under tension T . The	welded point is midway between	
the two bridg	es. When stationary waves are set	up in the composite wir	re, the joint is a node. Then the ratio	
of the numbe	r of loops formed in the thinner to	thicker wire is		
a) 2:3	b) 1:2	c) 2:1	d) 5:4	
656. Sound velocit	y is maximum in			
a) <i>H</i> ₂	b) <i>N</i> ₂	c) <i>He</i>	d) <i>O</i> ₂	
-	of sound wave while passing throu	•	_	
	ce through the medium. If the initia	•	wave was 100 <i>decibels,</i> its value	
-	issed through 3 <i>metre</i> thickness of			
a) 70 decibei		c) 81 decibel	d) 60 <i>decibel</i>	
J	musical instrument is 50 cm long a	•		
	1000~Hz is to be produced, the req	_	_	
a) 13.5 <i>cm</i>	b) 2.7 <i>cm</i>	c) 5.4 <i>cm</i>	d) 10.3 <i>cm</i>	
659. The speed of		13.0		
-	epend upon density of the gas	-	d upon charges in pressure	
	epend upon temperature	d) Depends upon		
=	ment to determine the speed of sou	_	olumn	
	he tuning fork are kept in a vertica			
	he tuning fork are kept in a horizo			
	The same of the sa	igth of the resonating at	r column is close to the wavelength	
	of sound in air d) In one of the two resonance observed, the length of the resonating air column is close to half of the			
	h of sound in air	igui oi the resonating ai	r column is close to half of the	
_	wave represented by $y = a \sin(\omega t - \frac{1}{2})$	– kv) is suporimposod o	an another wave represented by -	
_	c). The resultant is	- kx) is superimposed o	in another wave represented by =	
· ·		λ		
	wave having nodes at $x = \left(n + \frac{1}{2}\right)$	$\frac{1}{2}$, $n = 0,1,2$		
	velling along + x direction			
-	velling along - x direction			
d) A standing	wave having nodes at $x = \frac{n\lambda}{2}$; $n =$	0,1,2		
662. Two waves a	re approaching each other with a v	elocity of $20m/s$ and fr	equency n. The distance between	
two consecut	ive nodes is			
a) $\frac{20}{\pi}$	b) $\frac{10}{m}$	c) $\frac{5}{\pi}$	d) $\frac{n}{10}$	
n	π	$\frac{c_j}{n}$	^{u)} 10	
	nge of the audible sounds is			
a) 0 <i>Hz</i> – 30		-	$00 \ kHz \ d) \ 20 \ kHz - 20 \ MHz$	
	between phase difference ($\Delta \phi$) and			
a) $\Delta \phi = \frac{2\pi}{\lambda} \Delta$	$x b) \Delta \phi = 2\pi \lambda \Delta x$	c) $\Delta \phi = \frac{2\pi \lambda}{\lambda}$	d) $\Delta \phi = \frac{2\Delta x}{\lambda}$	
π	the seven overtone on a string fixed	$\Delta \lambda$	λ	
in it?	The seven over tone on a string lixed	a at both chus, now man	iy nodes and andinodes are set up	

c) 4,3

b) 5,4

a) 6,5

d) 3,2

666. The distance betw	veen the nearest node and	antinode in a stationary wa	ve is
a) λ	b) λ/2	c) λ/4	d) 2λ
667. In stationary wav	es, antinodes are the points	s where there is	
a) Minimum disp	lacement and minimum pre	essure change	
b) Minimum disp	lacement and maximum pr	essure change	
c) Maximum disp	lacement and maximum pr	essure change	
d) Maximum disp	lacement and minimum pr	essure change	
668. An open pipe reso	onates with a tuning fork of	frequency 500 Hz. It is obs	erved that two successive nodes
		e open end. The speed of so	
a) 260 ms^{-1}	b) 300 ms ⁻¹	c) 320 ms ⁻¹	d) 360 ms^{-1}
669. Doppler effect is a	applicable for		
a) Moving bodies		b) One is moving a	and other are stationary
c) For relative mo		d) None of these	
			n ⁻¹ . The frequency of sound of its
horn as heard by		e crossing is 260Hz. The fre	
a) 200 Hz	b) 244 Hz	c) 150 Hz	d) 80 Hz
			eats/second while vibrating in
	-		nd that of closed pipe is doubled.
		ond while vibrating in the fu	
a) 2	b) 6	c) 8	d) 7
			action of a wire. If the length of the
	ocity of sound in air is $360 n$		
a) 90 <i>sec</i> ⁻¹	b) 180 sec ⁻¹	c) 120 sec ⁻¹	d) $360 \ sec^{-1}$
		Land Control of the C	e of the wavelength is the wave
	the maximum particle veloc		
a) <i>A</i>	b) $\pi A/2$	c) πA	d) $2\pi A$
	ound increases at night due		
a) Increase in der		b) Decreases in de	ensity of air
c) Low temperati		d) None of these	
· ·	J	·	Any two successive forks produce
•	e frequency of the first tunii	ng fork is the octave of the i	ast fork, then the frequency of the
21 st fork is	b) 200 II-	a) 04 H=	4) 07 U-
a) 72 Hz	b) 288 Hz	c) 84 Hz	d) 87 Hz
-		requencies are in the ratio	dges be placed from A to divide the
a) 30 cm, 90 cm	b) 60 cm, 90 cm	c) 40 cm, 70 cm	d) None of these
•	nce between two waves re	•	d) None of these
=	0t + (x/50) + 0.5]m	presented by	
$y_1 = 10^{-6} \sin[100]$ $y_2 = 10^{-6} \cos[10]$			
		essed in second, is approxi	mataly
a) 1.5 rad	b) $1.07 rad$	c) 2.07 <i>rad</i>	d) 0.5 <i>rad</i>
•	,		0 m/s and frequency is 165 Hz .
-	tween the nodes is	clocity of sound in all is 330	my's and frequency is 103 mz.
a) 2 m	b) 1 <i>m</i>	c) 0.5 m	d) 4 m
•	•	•	t in m in t in seconds. The
velocity of the wa		ominiate Zajj where a is	m men es ana e m seconas, me
a) $1 m/s$	b) 2 <i>m/s</i>	c) 5 <i>m/s</i>	d) 10 <i>m/s</i>
a, 1111/3	5) 4 114 3	5) 5 116/5	a) 10 110/3

680.	_		an observer. The ratio of from 11:9. If the speed of soun	equencies of the horn noted d is v , the speed of the car
	is		· · · · · · · · · · · · · · · · ·	
	a) $\frac{1}{10}v$	b) $\frac{1}{2}v$	c) $\frac{1}{5}v$	d) <i>v</i>
	10	2	J	u) v
681.	~	onics in air is of the order o		
	a) 10^0 m	b) 10 ¹ m	c) 10^{-1} m	d) 10^{-2} m
682.	•			'he frequency of tuning fork
	=		he length is made 0.40 <i>met</i>	
602	a) 250 <i>Hz</i>	b) 375 <i>Hz</i>	c) $256 Hz$	d) 384 <i>Hz</i>
003.			$1\left(\frac{2\pi x}{3}\right)\cos 20\pi t$ where x an	d y are in cm and t in
		veen two adjacent nodes is		
	a) 3 cm	b) 4.5 cm	c) 6 cm	d) 1.5 cm
684.	-		ipped in water, so that 75%	of length of tube is inside
	water, then ratio of the fro	equency (v_0) of tube to str		2
	a) v_0	b) $2v_0$	c) $\frac{2}{3}v_0$	d) $\frac{3}{2}v_0$
685.	It is possible to hear beats	s from the two vibrating so	3	2
	a) 100 Hz and 150 Hz		b) 20 <i>Hz</i> and 25 <i>Hz</i>	
	c) 400 Hz and 500 Hz		d) 1000 Hz and 1500 Hz	
686.		ites the sound level by 20 d	lB. The intensity decreases	by a factor of
	a) 100	b) 1000	c) 10000	d) 10
687.	A source of sound of frequ	uency n is moving towards	a stationary observer with	a speed S. If the speed of
	sound in air is V and the f	requency heard by the obs	erver is $n_{ m 1}$, the value of $n_{ m 1}$ /	'n is
	a) $(V + S)/V$	b) $V/(V+S)$	c) $(V-S)/V$	d) $V/(V-S)$
688.		-	er with a velocity of $10 m/s$	
			om the source as 1950 <i>Hz</i> ,	then actual frequency of the
	source is (velocity of sour		WITOIN	D 0.40 C W
600	a) 1950 <i>Hz</i>	b) 2068 <i>Hz</i>	c) 2132 <i>Hz</i>	d) 2486 Hz
689.			= : : :	s in the earth. The speed of
			out $8.0km/s$. A seismograp in before the first S wave. The	
	earthquake is located at a		il belore the mists wave. If	ie epicenter of the
	a) 25 km	b) 250 km	c) 2500 km	d) 5000 km
690.		•	•	ever with a velocity <i>v</i> equal
0,701			iway from the source with t	
	apparent frequency heard			•
	a) 50Hz	b) 100 Hz	c) 150 Hz	d) 200 Hz
691.	A sound wave of frequence	by n travels horizontally to	the right. It is reflected from	m a large vertical plane
			f the sound in the medium i	is c. Then
	a) The frequency of the re	eflected wave is $n \left[\frac{c+v}{c-v} \right]$		
	b) The wavelength of the			
	c) The number of waves s	strike the surface per secon	nd is $n\left[\frac{c+v}{c}\right]$	
	d) The number of beats he	eard by a stationary listene	er to the left to the reflectin	g surface is $\left[\frac{nv}{c-v}\right]$
692.	The wavelengths of two w	vaves are 50 and 51 $\it cm$ res		re of the room is 20°C, then

	water in the Indian ocean. $70 km/h$. The Indian subs	b) 10 an enemy submarine move The Indian submarine move sends out a sonar signal (so requency detected by the In	ves at $50 km/h$, and the enound wave in water) at 100	
	50 km/h	70 km/h		
694.	a) $1.04 \ kHz$ Two adjacent piano keys a n_2 . The number of beats h	b) 2 <i>kHz</i> are struck simultaneously. ' eard per second is	c) 2.5 <i>kHz</i> The notes emitted by them	d) 4.7 kHz have frequencies n_1 and
	a) $\frac{1}{2}(n_1 - n_2)$	b) $\frac{1}{2}(n_1 + n_2)$	c) $n_1 \sim n_2$	d) $2(n_1 - n_2)$
695.	The speed of sound oxyge	n (O_2) at a certain tempera will be (assume both gases b) $650 ms^{-1}$	ature is $460~ms^{-1}$. The spec	ed of sound in helium (He) d) 1420 ms^{-1}
696.	-	ion of two particles is given	•	u) 1420 ms -
	a) 3	b) $\frac{3}{\pi}$	c) $\frac{6}{\pi}$	d) 6
	superimposed on each oth	with a phase difference of π , ner, then the maximum amp	/2, and each having amplit	
	v -	V Z		d) $\sqrt{2}A$: ω
	A wave is reflected from a a) $\pi/4$	rigid support. The change b) $\pi/2$	in phase on reflection will c) π	be d) 2π
	An open pipe of length 33 this frequency is a) Fundamental frequency	<i>cm</i> resonates with frequer	ncy of 100 <i>Hz</i> . If the speed of the by Third harmonic of the by	
	c) Second harmonic of the	= =	d) Fourth harmonic of the	•
	time interval between suc	cessive maximum intensiti	es will be	ng these forks together, the
	= :	b) 1/2 sec which of the following wave		d) 2 sec
	sound in air, respectively		_	-
703.	Two instruments having s instruments is increased by is a) 300 Hz	b) $\frac{v}{L}$ and $\frac{v}{2L}$ stretched strings are being by 1%, 3 beats are produce b) 500 Hz	played in union. When the d in 2s. the initial frequenc	y of vibration of each wire d) 400 Hz
704.	The displacement y of a w	vave travelling in the x -dire	ection is given by $y = 10^{-4}$	$\sin(600t - 2x + \frac{\pi}{3}) \text{ meters,}$
		neters and t is second. The b) 300		

705		•	on a toward a stationary so	_
	varies with time as	is the observer approaches	source, the apparent frequ	ency, heard by the observer
		b) /A	a) /A	d)
	a) n' \\ n	b) n' 1	c) n' 1	
		n /	n	"
706	Δ tuning fork of frequence	r_{V} 330 Hz resonates with a	n air column of length 120	cm in a cylindrical tube, in
700	-	· ·	ed in it, the minimum heigh	-
		ce again is (velocity of soun	_	t of water required for
	a) 75 <i>cm</i>	b) 60 <i>cm</i>	c) 50 <i>cm</i>	d) 45 <i>cm</i>
707		•		c. The distance of the hillock
		γ of sound in air is 330 m/s		
	a) 220 m	b) 247.5 <i>m</i>	c) 268.5 m	d) 292.5 <i>m</i>
708		,		ver with velocity 1/3 of the
			econd the observer will rece	- '
	a) 384	b) 192	c) 300	d) 200
709	. A motor car blowing a ho	orn of frequency 124vib/se	ec moves with a velocity 72	<i>km/hr</i> towards a tall wall.
	The frequency of the refl	ected sound heard by the d	lriver will be (velocity of so	und in air is $330 m/s$)
	a) 109 <i>vib/sec</i>	b) 132 <i>vib/sec</i>	c) 140 <i>vib/sec</i>	d) 248 <i>vib/sec</i>
710	' A sound source is movin	g towards stationary listen	er with $\frac{1}{10}$ th of the speed of	f sound. The ratio of
	apparent to real frequen	cy is		
	a) $\left(\frac{9}{10}\right)^2$	b) 10/9	c) 11/10	d) $\left(\frac{11}{10}\right)^2$
711	With what velocity shou	ld an observer approach sta	ationary sound source, so tl	hat apparent frequency of
	•	uble the actual frequency? (•	
	a) $\frac{v}{2}$	b) 3v		d) V
712	. Ultrasonic waves are pro	oduced by		
	a) Piezoelectric effect	b) Pettiro's effect	c) Doppler's effect	d) Coulomb's law
713	<u> </u>		ed string is 200 Hz. If the te	
	-		riginal value, the frequency	
	a) 25 <i>Hz</i>	b) 200 <i>Hz</i>	c) 400 Hz	d) 1600 <i>Hz</i>
714			ng fork, a beat frequency of	
	•	with a tuning fork of 437 Hz	z, the beat frequency is 8 Hz	z. The string frequency (Hz)
	is	1) 425) 420	1) 440
715	a) 445	b) 435	c) 429	d) 448
/15	mountain and velocity of	=	ho after 1 <i>sec</i> . If sound is re . Then the distance betweer	
	point is	12.040) of	12.470
716	a) 680 m	b) 340 m	c) 85 m	d) 170 m
/16	-	different between them w	500 Hz. Phase difference be	etween two consecutive
	a) 0.72 cm	b) 120 cm	c) 12 cm	d) 7.2 cm
717		•	becomes double of its valu	
'	a) 273 <i>K</i>	b) 546 <i>K</i>	c) 1092 <i>K</i>	d) 0 <i>K</i>
718	-	•	armonic waves is $y = \frac{10}{\pi} \sin y$,
	periodic time and maxim	ium velocity of the particle:	s in the medium will respec	cuvery be

	a) 10^{-3} sec and 330 m/sec		b) 10^{-4} sec and 20	b) 10^{-4} sec and $20 \ m/sec$	
	c) 10^{-3} sec and $200 \ m/sec$		d) 10^{-2} sec and 20	00 m/sec	
719.	At which temper	rature the speed of sound in h	-	gen will be same as that of speed of sound in oxygen	
	100°C	-			
	a) -148°C	b) −212.5°C	c) −317.5°C	d) -249.7°C	
720.	Standing station	ary waves can be obtained in	an air column even if the i	nterfering waves are	
	a) Of different p		b) Of different amp	_	
	c) Of different q		d) Moving with dif		
721.	•	equency of pipe is 100 Hz and			
	a) Pipe is open a		b) Pipe is closed at		
		en and another end is closed			
722.	•	of light in visible part (λ_V) and	•		
	a) $\lambda_V > \lambda_S$	b) $\lambda_S > \lambda_V$	c) $\lambda_S = \lambda_V$	d) None of these	
723.		longitudinal waves given by			
		c) will have equal intensity.	- 1	,, 2(, .)	
		-	ency in same medium is pr	oportional to square of amplitude	
	only	and a man of a Brown and a		operational or equal of a uniproduct	
	-	s false, Statement II is true	h) Statement Lis tr	ue Statement II is false	
	-		=	rue, Statement II is true, Statement	
	•	ct explanation of statement I		explanation of statement I	
724					
,		a progressive wave is $y = 8 \text{s}$			
	a) 8 <i>m</i>	b) 4 <i>m</i>	c) 2 m	d) 10 <i>m</i>	
725.		ole the frequency of the funda			
		\emph{h} of the original length and th	e tension is changed. The f	actor by which the tension is to be	
	changed, is		ž.		
	a) 3/8	b) 2/3	c) 8/9	d) 9/4	
726.				of 1.2 kHz. Speed of sound in air is	
	$350 ms^{-1}$. The f		lection from the wall as he	ard by the driver of the engine is	
	a) 2.4kHz	b) 0.24 kHz	c) 1.6 kHz	d) 1.2 kHz	
727.		es that can be propagated thr	9		
	a) Transverse	b) Longitudinal	c) Both (a) and (b)) d) None of these	
728.	With what veloc	rity an observer should move	relative to a stationary sou	rce so that he hears a sound of	
	double the frequ	iency of source			
	a) Velocity of so	und towards the source			
	b) Velocity of so	und away from the source			
	=	city of sound towards the sour			
	d) Double the ve	elocity of sound towards the s	ource		
729.	_		stretched string. If the strin	g vibrates in 5 segments and the	
	wave velocity is	20 m/s, the frequency is			
	a) 2 <i>Hz</i>	b) 4 <i>Hz</i>	c) 5 <i>Hz</i>	d) 10 <i>Hz</i>	
730.	The vibrating of	four air columns are represe	nted in the figure. The ratio	o of frequencies n_p : n_q : n_r : n_s is	
	,				

	p	\overline{q}			
	***	The grant of			
	X X	χ			
	r	S			
	a) 12:6:3:5	b) 1:2:4:3	c) 4:2:3:1	d) 6:2:3:4	
	a, 12.0.0.0	0) 1.2.1.0	c) 1.2.3.1	u j 0.2.0.1	

	_			th at $4 m/s$ produce whistle
a)	• •	cy 300 <i>Hz</i> . Find the number b) 6	c) 7	d) 12
-	ว quation of progressive w		c) /	u) 12
-	$= a \sin \left[10\pi x + 11\pi t + \right]$	_		
a)	Its wavelength is 0.2 un	its	b) It is travelling in the p	ositive x-direction
-	Wave velocity is 1.5 uni		d) Time period of SHM is	
733. A	vehicle sounding a whis	tle of frequency 256 Hz is a	moving on a straight road,	towards a hill with a
	Plocity of $10 ms^{-1}$. The name relocity of sound = 330 n	-	observed by a person trav	velling in the vehicle is
a)	Zero	b) 10	c) 14	d) 16
734. Tv	wo strings A and B of len	gths, $L_A = 80 \ cm$ and $L_B =$	= <i>x cm</i> respectively are use	d separately in a sonometer
Th	ne ratio of their densities	$s\left(d_{A}/d_{B} ight)$ is 0.81. the diam	eter of B is one-half that of	f A. if the strings have the
sa	me tension and fundam	ental frequency the value o	of x is	
•	33	b) 102	c) 144	d) 130
	ne apparent wavelength avelength. Then the velo	_	ving away from the earth i	s 0.2% more than its actual
a)	$6 \times 10^7 \text{ms}^{-1}$	b) $6 \times 10^6 \text{ms}^{-1}$	c) $6 \times 10^5 \text{ms}^{-1}$	d) $6 \times 10^4 \text{ms}^{-1}$
736. Co	ompressional wave pulse	e are sent to the bottom of	sea from a ship and the ec	ho is heard after 2s. if bulk
me	odulus of elasticity of wa	ater is $2 imes 10^9 Nm^{-2}$ and m	ean temperature is 4°C, th	e depth of the sea will be
a)	1014 m	b) 1414 m	c) 2828 m	d) None of these
737. Th	ne length of two open or	gan pipes are l and $(l+\Delta l)$) respectively. Neglecting (end correction, the
fre	equency of beats betwee	n them will be approxima	tely	
aì	$\frac{v}{2l}$	b) $\frac{v}{4I}$	c) $\frac{v\Delta l}{2l^2}$	d) $\frac{v\Delta l}{l}$
		10	21	ι
	· -			tube is dipped vertically in
	ater so that half of it is if $f/2$	i water. The fundamental f b) <i>f</i>	frequency of air column is:	now d) 2 <i>f</i>
_		•	dium, the particles of the n	,
ha	<u>-</u>		nese oscillations of a partic	_
	Kinetic energy		b) Potential energy	
-	Sum of kinetic energy a	nd potential energy		netic energy and potential
740. Th	ne two interfering waves	have intensities in the rat		ities of maxima and minima
in	the interference pattern	ı will be		
a)	1:25	b) 25:1	c) 9:4	d) 4:9
741. Th	ne wave equation is $y =$	$030\sin(314t - 1.57x)$ wh	here t , x and y are in second	d, meter and centimeter
re	spectively. The speed of	the wave is		
a)	100 m/s	b) 200 <i>m/s</i>	c) 300 m/s	d) 400 <i>m/s</i>
742. A	string fixed at both the ϵ	ends is vibrating in two seg	gments. The wavelength of	the corresponding wave is
a)	1	b) $\frac{l}{2}$	c) <i>l</i>	d) 2 <i>l</i>
743. _{Tv}	wo waves are represente	ed by $y_1 = a \sin\left(\omega t + \frac{\pi}{\epsilon}\right)$ a	and $y_2 = a \cos \omega t$. What wi	ll be their resultant
	nplitude	(6/		
a)	-	b) $\sqrt{2}a$	c) $\sqrt{3}a$	d) 2 <i>a</i>
-		•	=	eased to 4 <i>n</i> , the velocity of
	e wave will be	· · · · · · · · · · · · · · ·	1	, · · · · · · · · · · · · · · · · · ·

	a) <i>v</i>	b) 2 <i>v</i>	c) 4v	d) v/4	
745.	In meld's experiment in t	he transverse mode, the fre	quency of the tuning fork a	and the frequency of the	
	waves in the string are in	the ratio			
	a) 2:1	b) 4:1	c) 1:1	d) 1:2	
746.		observer are mutually at res	,		
, 101	sound heard by the obser		ou in opecia or ocuma is chair	gea, men me n'equency en	
	a) Increased	ver will appear to be	b) Decreased		
	c) Unchanged		d) Decreasing exponentia	11,7	
747	· ·	presented by $y = a \sin(\omega t - \frac{1}{2})$	· · · · · · · · · · · · · · · · · · ·	-	
/4/.	-	The sented by $y = a \sin(\omega t - \omega)$	$-\kappa x$) and $y = a \cos(\omega t - \kappa t)$	<i>x</i>). The wavelength of	
	wave I water are	15 /4		D 2 /4	
740	a) $\pi/2$	b) $\pi/4$	c) π	d) $3\pi/4$	
748.		g a tuning fork of frequency		sonance lengths are	
		77.4 cm respectively. The v		D 1	
	a) $338 ms^{-1}$	b) $328 ms^{-1}$	c) $330 ms^{-1}$	d) $320 ms^{-1}$	
749.	Two waves having equati				
	$x_1 = a\sin(\omega t + \phi_1), x_2 =$, , –,			
If in the resultant wave the frequency and amplitude remain equal to those of superimposing waves. Ther					
	phase difference between	ı them is			
	a) $\pi/6$	b) $2\pi/3$	c) $\pi/4$	d) $\pi/3$	
750.	In open organ pipe, if fun	damental frequency is n the	en the other frequencies ar	e	
	a) n, 2n, 3n, 4n	b) <i>n</i> , 3 <i>n</i> , 5 <i>n</i>	c) n, 2n, 4n, 8n	d) None of these	
751.	The speed of sound in air	is $340 m/s$. The speed with	n which a source of sound s	hould move towards a	
	stationary observer so th	at the apparent frequency b	ecomes twice of the origin	al	
	a) 640m/s	b) 340 <i>m/s</i>	c) 170m/s	d) 85 <i>m/s</i>	
752.	A simple harmonic progr	essive wave is represented	by the equation		
		where x and y are in cm and	-	ant, the phase difference	
		parated by 2.0 cm in the x-d		•	
	a) 18 ⁰	b) 54 ⁰		d) 72 ⁰	
753.	1	sents an equation of a prog		,	
	(2 1/		lessive wave, where t is in	second an x is in metre.	
	The distance travelled by				
	a) 8m	b) 10m	c) 5m	d) 32m	
754.	Two forks A and B when	sounded together produce f	four beats s ^{-1} . The fork A is	s in unison with 30 cm	
	length of a sonometer win	re and B is in unison with 2.	5 cm length of the same wi	re at the same tension. The	
	frequencies of the forks a	re			
	a) 24 Hz, 28 Hz	b) 20 Hz, 24 Hz	c) 16 Hz, 20 Hz	d) 26 Hz, 30 Hz	
755.	A string of length 0.4m ar	nd mass 10^{-2} kg is tightly cl	amped at the ends. The ten	sion in the string is 1.6 N.	
	Identical wave pulses are	produced at one end at equ	ual intervals of time Δt . The	minimum value of Δt ,	
	which allows constructive	e interference between succ	cessive pulses is		
	a) 0.05 s	b) 0.10 s	c) 0.20 s	d) 0.40 s	
756.	In a plane progressive wa	ave given by $y = 25 \cos(2\pi t)$	$(t-\pi x)$, the amplitude and	frequency are respectively	
	a) 25,100	b) 25,1	c) 25,2	d) 50π , 2	
757.	=	ives the displacement along	,		
		er and t is time in second. T		,	
	a) Of frequency $100/\pi$ Hz		ms represented a wave		
	b) Of wavelength one me				
	-	city of $50/\pi~ms^{-1}$ in the pos	sitive X-direction		
		city of $100 ms^{-1}$ in the nega			
750				with another sine ones at	
700.	An organ pipe open at on	e end is vibrating in first ov	er tone and is in resonance	with another pipe open at	

both ends and vibrating in third harmonic. The ratio of length of two pipe is

a) 3:8	b) 8:3	c) 1:2	d) 4:1
759. Suppose that th	e speed of sound in air at a giv	en temperature is 400 <i>m/</i>	sec. An engine blows a whistle at
1200 Hz freque	ncy. It is approaching an obse	rver at the speed of $100m_{ m p}$	/sec. What is the apparent
frequency as he	ard by the observer		
a) 600 <i>Hz</i>	b) 1200 <i>Hz</i>	c) 1500 Hz	d) 1600 <i>Hz</i>
760. A string vibrate	s with a frequency of 200 Hz. V	When its length is doubled	and tension is altered, it begins to
vibrate with a fi	requency of 300 Hz. The ratio	of the new tension to the o	riginal tension is
a) 9:1	b) 1:9	c) 3:1	d) 1:3
761. The equation y	$= a \sin 2\pi \left(\frac{t}{\pi} - \frac{x}{3}\right)$, where the	symbols carry the usual m	eaning and a, T and λ ate positive,
represents a wa	(1 ///		
a) Amplitude 2a		b) Period T/λ	
c) Speed xλ	•	d) Speed (λ/T)	
	sound of frequency 800 Hz is	, , ,	istener with a speed of $30 m/s$,
_	e sound to be heard by the list		
a) 733.3 <i>Hz</i>	b) 644.8 <i>Hz</i>	c) 481.2 Hz	d) 286.5 <i>Hz</i>
	-	•	ation of air column in the vessel
a) Remains sam		b) Decreases	
c) Increases		d) First increases	hen decreases
	pipe the first and second resor	•	
=	hat will be the end correction?	-	is 2217 cm and 7 old cm
a) 1.05 cm	b) 115.5 cm	c) 92.5 cm	d) 113.5 cm
•			ms^{-1} and a frequency of 100 Hz.
_	rence between two particles o	and the same of th	
a) $\pi/8$	b) $\pi/4$	c) $3\pi/8$	d) $\pi/2$
- ·	ary wave is formed then its fre		u) n/2
	of the individual waves		e individual waves
767	is described by the court	$\lim_{x \to \infty} \frac{x}{x} = \frac{x}{x}$	ve e maximum particle velocity is
		on $y = y_0 \sin 2\pi \left[\int t - \frac{1}{\lambda} \right]$. In	e maximum particle velocity is
-	nes the wave velocity if		
a) $\lambda = \pi y_0/4$	b) $\lambda = 2\pi y_0$	c) $\lambda = \pi/y_0$	d) $\lambda = \pi y_0/2$
	ipe, if fundamental frequency	-	ncies are
a) V,2v,3v,4v	b) V,3v,5v	c) V,2v,4v,8v	d) None of these
	one end and containing air is		
	ame tube is open at both the e	•	•
a) 1024 <i>Hz</i>	b) 512 <i>Hz</i>	c) 256 <i>Hz</i>	d) 128 <i>Hz</i>
770. If the wave equa	ation $y = 0.08 \sin \frac{2\pi}{\lambda} (200t - \lambda)$	lpha) then the velocity of the $lpha$	vave will be
a) $400\sqrt{2}$	b) $200\sqrt{2}$	c) 400	d) 200
-	the wavelengths of the waves g	giving resonance with the f	undamental, first and second
	ectively of a closed organ pipe,		
a) 1:3:5	b) 1:2:3	c) 5:3:1	
,	-,	- ,	d) $1:\frac{1}{3}:\frac{1}{5}$
772. An organ pipe is	s closed at one end has fundan	nental frequency of 1500 <i>E</i>	z. The maximum number of
overtones gener	rated by this pipe which a nor	mal person can hear is	
a) 14	b) 13	c) 6	d) 9
773. A man fires a bu	ıllet standing between two clif	ffs. First echo is heard after	3 seconds and second echo is
heard after 5 se	conds. If the velocity of sound	is $330 m/s$, then the dista	nce between the cliffs is
a) 1650 m	b) 1320 m	c) 990 m	d) 660 m

774. A bomb explodes on the moon. How long will it take for the sound to reach the earth?

	a) 1000 s	b) 1 day	c) 10 s	d) None of these
775.		$aving equation x_1 = 3 \sin \alpha$	$\omega t \text{ and } x_2 = 4\sin(\omega t - 90)$	°) are superimposed. The
	amplitude of the resultan			
	a) 5 unit	b) 1 unit	c) 3 unit	d) 4 unit
776.		tensities I_1 and I_2 pass thro		ime in the same direction.
		and minimum intensities is		
	a) $I_1 + I_2$	b) $\left(\sqrt{I_1} + \sqrt{I_2}\right)$		
777.	A pipe closed at one end	and open at the other end, r	esonate with sound wave:	s of frequency 135 Hz and
		any wave of frequency inte	ermediate between these t	wo. Then the frequency of
	the fundamental note is			
	a) 30 Hz	b) 15 Hz	c) 60 Hz	d) 7.5 Hz
778.		z fall normally on a perfectly		
	= = = = = = = = = = = = = = = = = = =	have maximum amplitude	· · ·	
	a) $\frac{7}{8}m$	b) $\frac{3}{8}m$	c) $\frac{1}{9}m$	d) $\frac{1}{4}m$
	U	ర g a tuning fork of frequency	U	Т
,,,,		77.4 cm respectively. The v		somance length are
	a) 338ms ⁻¹	b) 328ms ⁻¹	c) 330ms ⁻¹	d) 320ms ⁻¹
780.		,	-	and t in seconds, is a wave
	travelling along the	, , , , , , , , , , , , , , , , , , , ,	•	,
		th frequency 1 Hz and wave	elength $\lambda = 0.2m$	
	b) Negative <i>x</i> direction w	rith amplitude with amplitu	de $0.25 m$ and wavelength	$\lambda = 0.2m$
	c) Negative x direction w	rith frequency 1 <i>Hz</i>		
	d) Positive x direction wi	th frequency π Hz and wav	velength $\lambda = 0.2m$	
781.		ngth L and open organ pipe	_	
		are equal in both the pipes. I		ng in their first overtone
	with same frequency. The	e length of the open organ p	23 1 1 1 1 1 1 1 1 1 1	
	L	b) $\frac{4L}{3}$	c) $\frac{4L}{3}$ $\frac{p_1}{p_2}$	d) $\frac{4l}{3} \left \frac{p_2}{p_2} \right $
	a) $\frac{L}{3}$	b) 	$rac{c}{3}\sqrt{p_2}$	$\frac{a_1}{3}\sqrt{p_2}$
782.	A student is performing t	he experiment of Resonanc	e Column. The diameter of	f the column tube is $4cm$.
		ng fork is $512Hz$. The air te		
	• •	meter scale coincides with t	•	•
	first resonance occurs, th	e reading of the water level	in the column is	
	a) 14.0 <i>cm</i>	b) 15.2 <i>cm</i>	c) 16.4 <i>cm</i>	d) 17.6 <i>cm</i>
783.	A string is rigidly tied at t	two ends and its equation of	f vibration is given by $y =$	$\cos 2\pi t \sin 2\pi x$. Then
	minimum length of string	gis		
	a) 1 m	b) $\frac{1}{2}m$	c) 5 m	d) $2\pi m$
704		4		
704.		Hz is sent along a string toved at a distance of 10 cm from		
	(and reflected) waves are		on the fixed end of the str	ing. The speeds of incluent
	a) 5ms ⁻¹	b) 10ms ⁻¹	c) 20ms ⁻¹	d) 40ms ⁻¹
785	Sound waves transfer	b) 10ms	c) 201113	aj toms
, 00.	a) Only energy not mome	entum	b) Energy	
	c) Momentum		d) Both energy and mom	entum
786.		so that its length is increase		
-			,,	
	= =	f longitudinal vibrations and b) n^2 : 1	a transverse vibrations where (n, \sqrt{n})	
	a) 1: n	ບງ ແ 😘	C) γπ: 1	d) n: 1
GI	PLUS EDUCATION W	/EB: <u>WWW.GPLUSEDUCATIO</u>	DN.ORG PHONE N	IO: 8583042324 Page 61

787. A column of air of length air column which will res			etched string of length 40 c ame string at a the same ter	-
a) 100 cm	b) 75 cm		c) 50 cm	d) 25 cm
788. A stone is dropped into a man approximately after	•	ver 500 met	-	•
a) 11.5 seconds	b) 21 seconds		c) 10 seconds	d) 14 seconds
789. A string in a musical instr	•		•	•
1000 Hz is to be produced		_		1 000 112. If a frequency of
a) 62.5 cm	b) 50 cm	iengui oi su	c) 40 cm	d) 37.5 cm
790. Which of the following do	*	edium for tr		aj o 710 cm
a) Cathode ray	, not require me	outuin for th	b) Electromagnetic wave	
c) Sound wave			d) None of the above	
791. For simple harmonic vibr	rations $y_1 = 8 c$	osωt	.,	
$y_2 = 4\cos(\omega t + \frac{\pi}{2})$	71			
$y_3 = 2\cos(\omega t + \pi)$				
	iperimposed on	one anothe	r. The resulting amplitude	and phase are respectively
a) $\sqrt{45}$ and $\tan^{-1}(\frac{1}{2})$	b) $\sqrt{45}$ and ta	$n^{-1}\left(\frac{1}{3}\right)$	c) $\sqrt{75}$ and $\tan^{-1}(2)$	d) $\sqrt{75}$ and $\tan^{-1}(\frac{1}{3})$
792. If source and observer bo	th are relatively	y at rest and	l if speed of sound is increa	sed then frequency heard
by observer will				
a) Increases	b) Decreases		c) Can not be predicated	d) Will not change
793. An open tube is in resona	nce with string	(frequency	of vibration of tube is n_0).	If tube is dipped in water so
that 75% of length of tube	e is inside wate:	r, then the r	atio of the frequency of tub	e to string now will be
a) 1	b) 2		c) $\frac{2}{3}$	d) $\frac{3}{2}$
704 FI	1 1 .1	.1.6	3	4
794. The wavelength of light o	bserved on the	earth from a	a moving star is found to d	ecrease by 0.05%, the star
is a) Coming closer with a v	JULIE	1041	:ATION	
b) Moving away with a ve				
c) Coming closer with a v	=			
d) Moving away with a ve	•		AD and CD of aqual langth	A block of magazinia
795. A massless rod is suspend	•	U	' Further, it is observed tha	
		•	2 nd harmonic frequency in	• •
	requency) in Ar	o is equal to	2 nd narmonic frequency in	cD. Then, length of bO is
0				
$\begin{array}{c c} B & & D \\ \hline \downarrow & & L \end{array}$				
$\stackrel{\lambda}{ m }$				
, L	1.4L		3L	L
a)	b) $\frac{4L}{5}$		c) $\frac{3L}{4}$	d) $\frac{L}{4}$
796. The Doppler's effect is ap	plicable for			
a) Light waves	b) Sound wav	es	c) Space waves	d) Both (a) and (b)
797. Beats are the result of				
a) Diffraction			b) Destructive interferen	ce
c) Constructive and destr	uctive interfere	ence	d) Superposition of two v	vaves of nearly equal

	•	·- · · ·	sec with one fork of frequence oeats/sec. The frequency o	-	
799.	A travelling wave represe $a \sin(\omega t + kx)$. The result	inted by $y = a \sin(\omega t - kx)$ tant is) is superimposed on anoth		
	a) A standing wave having	g nodes at $x = \left(n + \frac{1}{2}\right) \frac{\lambda}{2}$, n	= 0,1,2		
	b) A wave travelling alongc) A wave travelling along	g - x direction			
	d) A standing wave having	g nodes at $x = \frac{n\lambda}{2}$; $n = 0,1,3$	2		
	<u>=</u>		oidly towards a wall with a n the wall and the source, t	velocity of $5m/s$. The hen beats per second heard	
	a) 7.8 <i>Hz</i>	b) 7.7 <i>Hz</i>	c) 3.9 <i>Hz</i>	d) Zero	
	in order to raise the wave	speed by 20% is	ension is 120 N. the percent		
	a) 44%	b) 40%	c) 20%	d) 10%	
	a) Maximum	tween the two wave is 211 C	during superposition, then the resultant amplitude is b) Minimum		
	c) Maximum or minimum		d) None of the above		
			ed to the same fundamental	frequency. The ratio of	
	their length is a) 1:1	b) 2:1	c) 1:4	d) 1:2	
		wards the stationary source		u) 1.2	
	a) Apparent frequency wib) Apparent frequency wi	ll be less than the real freq ll be greater than the real f ll be equal to real frequenc	uency requency		
805.	A man is standing on the p	olatform and one train is ap		in is going away with speed nber of beats heard by him	
	a) 12	b) Zero	c) 6	d) 3	
	end. If the frequency of th a frequency f_2 . If in this ca	e tuning fork is increased sase the pipe vibrates n^{th} ha	n tuning fork of frequency f slowly from f_1 then again a	resonance is obtained with	
	1	1	1	1	
	•	opping. If the engine passe	the whistle of an engine that is the man at time $t_{ m 0}$. How $c_{ m 0}$	-	
	a) f t_0 t	b) f t_0 t	c) f t_0 t	$d) f \underbrace{\qquad \qquad }_{t_0} t$	
	Beats are produced by two	o waves given by $y_1 = a \sin \theta$	n 2000 πt and $y_2 a \sin 2008$	πt . The number of beats	
	a) Zero	b) One	c) Four	d) Eight	

809. Two loudspeakers L_1 and L_2 driven by a common oscillator and amplifier, are arranged as shown. The frequency of the oscillator is gradually increased from zero and the detector at D records a series of maxima and minima. If the speed of sound is $330 \ ms^{-1}$ then the frequency at which the first maximum is observed is

- a) 165 Hz
- b) 330 Hz
- c) 496 Hz
- d) 660 Hz

- 810. "Stationary waves" are so called because in them
 - a) The particles of the medium are not disturbed at all
 - b) The particles of the medium do not execute SHM
 - c) There occurs no flow of energy along the wave
 - d) The interference effect can't be observed

